
Disclaimer: This vignette reflects package state at version 0.9-7 and is hence
somewhat outdated. New functionality has been added to the package: this in-
cludes various endemic-epidemic modelling frameworks for surveillance data (hhh4,
twinSIR, and twinstim), as well as more outbreak detection methods (glrnb, boda,
and farringtonFlexible). These new features are described in detail in Meyer
et al. (2017) and Salmon et al. (2016), respectively. Note in particular that use of
the new S4 class sts instead of disProg is encouraged to encapsulate time series
data.

Getting started with outbreak detection

Michael Höhle✯, Andrea Riebler and Michaela Paul

Department of Statistics

University of Munich

Germany

17 November 2007

Abstract

This document gives an introduction to the R package surveillance

containing tools for outbreak detection in routinely collected surveil-
lance data. The package contains an implementation of the procedures
described by Stroup et al. (1989), Farrington et al. (1996) and the
system used at the Robert Koch Institute, Germany. For evaluation
purposes, the package contains example data sets and functionality to
generate surveillance data by simulation. To compare the algorithms,
benchmark numbers like sensitivity, specificity, and detection delay can
be computed for a set of time series. Being an open-source package it
should be easy to integrate new algorithms; as an example of this
process, a simple Bayesian surveillance algorithm is described, imple-
mented and evaluated.
Keywords: infectious disease, monitoring, aberrations, outbreak, time
series of counts.

✯Author of correspondance: Department of Statistics, University of Munich, Ludwigstr.

33, 80539 München, Germany, Email: hoehle@stat.uni-muenchen.de

1

1 Introduction

Public health authorities have in an attempt to meet the threats of infectious
diseases to society created comprehensive mechanisms for the collection of
disease data. As a consequence, the abundance of data has demanded the
development of automated algorithms for the detection of abnormalities.
Typically, such an algorithm monitors a univariate time series of counts using
a combination of heuristic methods and statistical modelling. Prominent
examples of surveillance algorithms are the work by Stroup et al. (1989)
and Farrington et al. (1996). A comprehensive survey of outbreak detection
methods can be found in (Farrington and Andrews, 2003).

The R-package surveillance was written with the aim of providing a
test-bench for surveillance algorithms. From the Comprehensive R Archive
Network (CRAN) the package can be downloaded together with its source
code. It allows users to test new algorithms and compare their results
with those of standard surveillance methods. A few real world outbreak
datasets are included together with mechanisms for simulating surveillance
data. With the package at hand, comparisons like the one described by Hut-
wagner et al. (2005) should be easy to conduct.

The purpose of this document is to illustrate the basic functionality of
the package with R-code examples. Section 2 contains a description of the
data format used to store surveillance data, mentions the built-in datasets
and illustrates how to create new datasets by simulation. Section 3 contains
a short description of how to use the surveillance algorithms and illustrate
the results. Further information on the individual functions can be found
on the corresponding help pages of the package.

2 Surveillance Data

Denote by {yt; t = 1, . . . , n} the time series of counts representing the surveil-
lance data. Because such data typically are collected on a weekly basis, we
shall also use the alternative notation {yi:j} with j = {1, . . . , 52} being the
week number in year i = {−b, . . . ,−1, 0}. That way the years are indexed
such that most current year has index zero. For evaluation of the outbreak
detection algorithms it is also possible for each week to store – if known –
whether there was an outbreak that week. The resulting multivariate series
{(yt, xt) ; t = 1, . . . , n} is in surveillance given by an object of class dis-
Prog (disease progress), which is basically a list containing two vectors: the
observed number of counts and a boolean vector state indicating whether
there was an outbreak that week. A number of time series are contained in
the package (see data(package="surveillance")), mainly originating from
the SurvStat@RKI database at https://survstat.rki.de/ maintained by
the Robert Koch Institute, Germany (Robert Koch-Institut, 2004). For ex-

2

https://survstat.rki.de/

ample the object k1 describes Kryptosporidosis surveillance data for the
German federal state Baden-Württemberg 2001-2005. The peak in 2001 is
due to an outbreak of Kryptosporidosis among a group of army-soldiers in
boot-camp (Robert Koch Institute, 2001).

> data(k1)

> plot(k1,main="Kryptosporidiosis in BW 2001-2005")

Kryptosporidiosis in BW 2001−2005

time

N
o
.
in

fe
c
te

d

2001

I

2001

III

2002

I

2002

III

2003

I

2003

III

2004

I

2004

III

2005

I

0
5
0

1
0
0

1
5
0

2
0
0

Infected

Outbreak

For evaluation purposes it is also of interest to generate surveillance data
using simulation. The package contains functionality to generate surveillance
data containing point-source like outbreaks, for example with a Salmonella
serovar. The model is a Hidden Markov Model (HMM) where a binary
state Xt, t = 1, . . . , n, denotes whether there was an outbreak and Yt is the
number of observed counts, see Figure 1.

X1 X2 X3
. . . Xn

Y1 Y2 Y3 Yn

Figure 1: The Hidden Markov Model

The state Xt is a homogenous Markov chain with transition matrix

Xt\Xt+1 0 1

0 p 1 − p
1 1 − r r

Hence 1 − p is the probability to switch to an outbreak state and 1 − r is
the probability that Xt = 1 is followed by Xt+1 = 1. Furthermore, the

3

observation Yt is Poisson-distributed with log-link mean depending on a
seasonal effect and time trend, i.e.

logµt = A · sin (ω · (t+ ϕ)) + α+ βt.

In case of an outbreak (Xt = 1) the mean increases with a value of K,
altogether

Yt ∼ Po(µt +K ·Xt). (1)

The model in (1) corresponds to a single-source, common-vehicle outbreak,
where the length of an outbreak is controlled by the transition probability
r. The daily numbers of outbreak-cases are simply independently Poisson
distributed with mean K. A physiologically better motivated alternative
could be to operate with a stochastic incubation time (e.g. log-normal or
gamma distributed) for each individual exposed to the source, which results
in a temporal diffusion of the peak. The advantage of (1) is that estimation
can be done by a generalized linear model (GLM) using Xt as covariate
and that it allows for an easy definition of a correctly identified outbreak:
each Xt = 1 has to be identified. More advanced setups would require
more involved definitions of an outbreak, e.g. as a connected series of time
instances, where the number of outbreak cases is greater than zero. Care is
then required in defining what a correctly identified outbreak for time-wise
overlapping outbreaks means.

In surveillance the function sim.pointSource is used to simulate such
a point-source epidemic; the result is an object of class disProg.

> set.seed(1234)

> sts <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

+ A = 1, alpha = 1, beta = 0, phi = 0,

+ frequency = 1, state = NULL, K = 1.7)

> plot(sts)

time

N
o
.
in

fe
c
te

d

2001

I

2001

IV

2002

III

2003

II

2004

I

2004

IV

2005

III

2006

II

2007

I

2007

IV

2008

III

0
5

1
0

1
5

2
0

2
5 Infected

Outbreak

4

3 Surveillance Algorithms

Surveillance data often exhibit strong seasonality, therefore most surveillance
algorithms only use a set of so called reference values as basis for drawing
conclusions. Let y0:t be the number of cases of the current week (denoted
week t in year 0), b the number of years to go back in time and w the number
of weeks around t to include from those previous years. For the year zero
we use w0 as the number of previous weeks to include – typically w0 = w.
Altogether the set of reference values is thus defined to be

R(w,w0, b) =

b
⋃

i=1

w
⋃

j= −w

y−i:t+j

 ∪

−1
⋃

k=−w0

y0:t+k

Note that the number of cases of the current week is not part of R(w,w0, b).
A surveillance algorithm is a procedure using the reference values to cre-

ate a prediction ŷ0:t for the current week. This prediction is then compared
with the observed y0:t: if the observed number of cases is much higher than
the predicted number, the current week is flagged for further investigations.
In order to do surveillance for time 0 : t an important concern is the choice
of b and w. Values as far back as time −b : t − w contribute to R(w,w0, b)
and thus have to exist in the observed time series.

Currently, we have implemented four different type of algorithms in
surveillance. The Centers for Disease Control and Prevention (CDC)
method (Stroup et al., 1989), the Communicable Disease Surveillance Centre
(CDSC) method (Farrington et al., 1996), the method used at the Robert
Koch Institute (RKI), Germany (Altmann, 2003), and a Bayesian approach
documented in Riebler (2004). A detailed description of each method is be-
yond the scope of this note, but to give an idea of the framework the Bayesian
approach developed in Riebler (2004) is presented: Within a Bayesian frame-
work, quantiles of the predictive posterior distribution are used as a measure
for defining alarm thresholds.

The model assumes that the reference values are identically and inde-
pendently Poisson distributed with parameter λ and a Gamma-distribution
is used as Prior distribution for λ. The reference values are defined to be
RBayes = R(w,w0, b) = {y1, . . . , yn} and y0:t is the value we are trying to
predict. Thus, λ ∼ Ga(α, β) and yi|λ ∼ Po(λ), i = 1, . . . , n. Standard
derivations show that the posterior distribution is

λ|y1, . . . , yn ∼ Ga(α+
n

∑

i=1

yi, β + n).

Computing the predictive distribution

f(y0:t|y1, . . . , yn) =

∞
∫

0

f(y0:t|λ) f(λ|y1, . . . , yn) dλ

5

we get the Poisson-Gamma-distribution

y0:t|y1, . . . , yn ∼ PoGa(α+
n

∑

i=1

yi, β + n),

which is a generalization of the negative Binomial distribution, i.e.

y0:t|y1, . . . , yn ∼ NegBin(α+
n

∑

i=1

yi,
β+n

β+n+1
).

Using the Jeffrey’s Prior Ga(1

2
, 0) as non-informative Prior distribution for

λ the parameters of the negative Binomial distribution are

α+
n

∑

i=1

yi =
1

2
+

∑

yi:j∈RBayes

yi:j and
β + n

β + n+ 1
=

|RBayes|

|RBayes| + 1
.

Using a quantile-parameter α, the smallest value yα is computed, so that

P (y ≤ yα) ≥ 1 − α.

Now
A0:t = I(y0:t ≥ yα),

i.e. if y0:t ≥ yα the current week is flagged as an alarm. As an example, the
Bayes1 method uses the last six weeks as reference values, i.e. R(w,w0, b) =
(6, 6, 0), and is applied to the k1 dataset with α = 0.01 as follows.

> k1.b660 <- algo.bayes(k1,

+ control = list(range = 27:192, b = 0, w = 6, alpha = 0.01))

> plot(k1.b660, disease = "k1", firstweek = 1, startyear = 2001)

Analysis of k1 using bayes(6,6,0)

time

N
o
.
in

fe
c
te

d

2001

I

2001

II

2001

III

2001

IV

2002

I

2002

II

2002

III

2002

IV

2003

I

2003

II

2003

III

2003

IV

2004

I

0
5
0

1
0
0

1
5
0

2
0
0

Infected

Upperbound

Alarm

Outbreak

Several extensions of this simple Bayesian approach are imaginable, for
example the inane over-dispersion of the data could be modeled by using

6

a negative-binomial distribution, time trends and mechanisms to correct
for past outbreaks could be integrated, but all at the cost of non-standard
inference for the predictive distribution. Here simulation based methods like
Markov Chain Monte Carlo or heuristic approximations have to be used to
obtain the required alarm thresholds.

In general, the surveillance package makes it easy to add additional
algorithms – also those not based on reference values – by using the existing
implementations as starting point.

The following call uses the CDC and Farrington procedure on the simu-
lated time series sts from page 4. Note that the CDC procedure operates
with four-week aggregated data – to better compare the upper bound value,
the aggregated number of counts for each week are shown as circles in the
plot.

> cntrl <- list(range=300:400,m=1,w=3,b=5,alpha=0.01)

> sts.cdc <- algo.cdc(sts, control = cntrl)

> sts.farrington <- algo.farrington(sts, control = cntrl)

> par(mfcol=c(1,2))

> plot(sts.cdc, legend.opts=NULL)

> plot(sts.farrington, legend.opts=NULL)

Analysis of sts using cdc(4*,0,5)

time

N
o
.
in

fe
c
te

d

●●●●●●●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●●
●●

●

●
●●●●●

●●●●
●●●

●●●

●

●

●

●
●

●

●

●●●●●

●
●
●●

●●

●●

●

●

●

●

●

●
●●

●●

●●

●●

●●

●
●●

●●●
●●●

2001

I

2001

III

2002

I

2002

III

0
1
0

2
0

3
0

4
0

5
0

6
0

Analysis of sts using farrington(3,0,5)

time

N
o
.
in

fe
c
te

d

2001

I

2001

III

2002

I

2002

III

0
5

1
0

1
5

2
0

2
5

Typically, one is interested in evaluating the performance of the various
surveillance algorithms. An easy way is to look at the sensitivity and speci-
ficity of the procedure – a correct identification of an outbreak is defined as
follows: if the algorithm raises an alarm for time t, i.e. At = 1 and Xt = 1 we
have a correct classification, if At = 1 and Xt = 0 we have a false-positive,
etc. In case of more involved outbreak models, where an outbreak lasts for
more than one week, a correct identification could be if at least one of the
outbreak weeks is correctly identified, see e.g. Hutwagner et al. (2005).

To compute various performance scores the function algo.quality can
be used on a survRes object.

7

> print(algo.quality(k1.b660))

TP FP TN FN Sens Spec dist mlag

[1,] 2 4 160 0 1 0.9756098 0.02439024 0

This computes the number of false positives, true negatives, false negatives,
the sensitivity and the specificity. Furthermore, dist is defined as

√

(Spec− 1)2 + (Sens− 1)2,

that is the distance to the optimal point (1, 1), which serves as a heuristic
way of combining sensitivity and specificity into a single score. Of course,
weighted versions are also imaginable. Finally, lag is the average number
of weeks between the first of a consecutive number of Xt = 1’s (i.e. an
outbreak) and the first alarm raised by the algorithm.

To compare the results of several algorithms on a single time series we
declare a list of control objects – each containing the name and settings of
the algorithm we want to apply to the data.

> control <- list(

+ list(funcName = "rki1"), list(funcName = "rki2"),

+ list(funcName = "rki3"), list(funcName = "bayes1"),

+ list(funcName = "bayes2"), list(funcName = "bayes3"),

+ list(funcName = "cdc", alpha=0.05),

+ list(funcName = "farrington", alpha=0.05)

+)

> control <- lapply(control, function(ctrl) {

+ ctrl$range <- 300:400; return(ctrl)

+ })

In the above, rki1, rki2 and rki3 are three methods with reference values
Rrki1(6, 6, 0), Rrki2(6, 6, 1) and Rrki3(4, 0, 2), all called with α = 0.05. The
bayes*methods use the Bayesian algorithm with the same setup of reference
values. The CDC method is special since it operates on aggregated four-
week blocks. To make everything comparable, a common α = 0.05 level is
used for all algorithms. All algorithms in control are applied to sts using:

> algo.compare(algo.call(sts, control = control))

TP FP TN FN sens spec dist mlag

rki(6,6,0) 6 2 90 3 0.667 0.978 0.334 0

rki(6,6,1) 7 1 91 2 0.778 0.989 0.222 0.5

rki(4,0,2) 8 2 90 1 0.889 0.978 0.113 0.5

bayes(6,6,0) 6 2 90 3 0.667 0.978 0.334 0

bayes(6,6,1) 7 2 90 2 0.778 0.978 0.223 0.5

bayes(4,0,2) 9 2 90 0 1 0.978 0.0217 0

cdc(4*,0,5) 7 2 90 2 0.778 0.978 0.223 1

farrington(3,0,5) 9 1 91 0 1 0.989 0.0109 0

8

A test on a set of time series can be done as follows. Firstly, a list
containing 10 simulated time series is created. Secondly, all the algorithms
specified in the control object are applied to each series. Finally the results
for the 10 series are combined in one result matrix.

> #Create 10 series

> ten <- lapply(1:10,function(x) {

+ sim.pointSource(p = 0.975, r = 0.5, length = 400,

+ A = 1, alpha = 1, beta = 0, phi = 0,

+ frequency = 1, state = NULL, K = 1.7)})

> #Do surveillance on all 10, get results as list

> ten.surv <- lapply(ten,function(ts) {

+ algo.compare(algo.call(ts,control=control))

+ })

> #Average results

> algo.summary(ten.surv)

TP FP TN FN sens spec dist mlag

rki(6,6,0) 31 22 945 12 0.721 0.977 0.2800 1.35

rki(6,6,1) 34 8 959 9 0.791 0.992 0.2095 1.35

rki(4,0,2) 37 6 961 6 0.860 0.994 0.1397 1.35

bayes(6,6,0) 31 43 924 12 0.721 0.956 0.2826 1.35

bayes(6,6,1) 36 19 948 7 0.837 0.980 0.1640 1.35

bayes(4,0,2) 39 20 947 4 0.907 0.979 0.0953 1.33

cdc(4*,0,5) 21 37 930 22 0.488 0.962 0.5131 8.80

farrington(3,0,5) 36 16 951 7 0.837 0.983 0.1636 1.73

A similar procedure can be applied when evaluating the 14 surveillance
series drawn from SurvStat@RKI (Robert Koch-Institut, 2004). A problem
is however, that the series after conversion to 52 weeks/year are of length 209
weeks. This is insufficient to apply e.g. the CDC algorithm. To conduct the
comparison on as large a dataset as possible the following trick is used: The
function enlargeData replicates the requested range and inserts it before
the original data, after which the evaluation can be done on all 209 values.

> #Update range in each - cyclic continuation

> range = (2*4*52) + 1:length(k1$observed)

> control <- lapply(control,function(cntrl) {

+ cntrl$range=range;return(cntrl)})

> #Auxiliary function to enlarge data

> enlargeData <- function(disProgObj, range = 1:156, times = 1){

+ disProgObj$observed <- c(rep(disProgObj$observed[range], times),

+ disProgObj$observed)

9

+ disProgObj$state <- c(rep(disProgObj$state[range], times),

+ disProgObj$state)

+ return(disProgObj)

+ }

> #Outbreaks

> outbrks <- c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2",

+ "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp")

> #Load and enlarge data.

> outbrks <- lapply(outbrks,function(name) {

+ data(list=name)

+ enlargeData(get(name),range=1:(4*52),times=2)

+ })

> #Apply function to one

> one.survstat.surv <- function(outbrk) {

+ algo.compare(algo.call(outbrk,control=control))

+ }

> algo.summary(lapply(outbrks,one.survstat.surv))

TP FP TN FN sens spec dist mlag

rki(6,6,0) 38 62 2646 180 0.174 0.977 0.826 5.43

rki(6,6,1) 65 83 2625 153 0.298 0.969 0.703 5.57

rki(4,0,2) 80 106 2602 138 0.367 0.961 0.634 5.43

bayes(6,6,0) 46 101 2607 172 0.211 0.963 0.790 4.07

bayes(6,6,1) 84 130 2578 134 0.385 0.952 0.617 2.21

bayes(4,0,2) 117 200 2508 101 0.537 0.926 0.469 1.93

cdc(4*,0,5) 65 94 2614 153 0.298 0.965 0.703 7.14

farrington(3,0,5) 43 71 2637 175 0.197 0.974 0.803 4.79

In both this study and the earlier simulation study the Bayesian approach
seems to do quite well. However, the extent of the comparisons do not make
allowance for any more supported statements. Consult the work of Riebler
(2004) for a more thorough comparison using simulation studies.

4 Multivariate Surveillance

As of version 0.9-2 surveillance supports the visualization of multivariate
time series of counts. An (multivariate) object of class disProg contains ma-
trices with the observed number of counts and the respective state chains,
where each column represents an individual time series. Additional elements
of the disProg-object are a neighbourhood matrix and a matrix with pop-
ulation counts. However, only modelling of the time series as by Held et al.
(2005) is currently available. In the near future the surveillance algorithms
will also be extended to handle these multivariate data.

10

For example, consider the weekly counts of new measles cases for each
“Kreis” (area) of the administrative district “Weser-Ems” in Lower Saxony,
Germany, in 2001 and 2002 (Robert Koch-Institut, 2004). Figure 2 shows a
map of the m = 15 areas. The corresponding m×m neighbourhood matrix
has elements 1 if two areas share a common border and is 0 otherwise.

03402

03403

03404

03451

03452

03453

03454

03455

03456

03457

03458

03459

03460

03461

03462

Figure 2: Map of the administrative district “Weser-Ems”

In the package surveillance the measles data are already available in
the form of a disProg-object.

> data("measles.weser")

> plot(measles.weser, title="measles in Weser-Ems 2001-2002",

+ xaxis.years=TRUE, startyear= 2001, firstweek=1)

time

N
o
.
o
f
In

fe
c
te

d

3402

3403

3404

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

measles in Weser−Ems 2001−2002

2001

I

2001

II

2001

III

2001

IV

2002

I

2002

II

2002

III

2002

IV

2003

I

0
1
0

2
0

3
0

4
0

5
0

The number of counts for each area can also be looked at and plotted
as individual time series. Here, the x-axis is the week number since 1st of
January 2001 and the y-axis is the number of measles cases.

11

> plot(measles.weser,as.one=FALSE,xaxis.years=FALSE)

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3402

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3403

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3404

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3451

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3452

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3453

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3454

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3455

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3456

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3457

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3458

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3459

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3460

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3461

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0 3462

The data are analysed using the model proposed by Held et al. (2005).
A call to the function algo.hhh fits a Poisson or negative binomial model
with mean

µit = λyi,t−1 + φ
∑

j∼i

yj,t−1 + nitνit , i = 1, . . . ,m, t = 1, . . . , n ,

where j ∼ i denotes all neighbours of i, to a multivariate time series of
counts. It is estimated by maximum likelihood using numerical optimization
methods. The nit are standardized population counts and log νit = αi +βt+
∑S

s=1

(

γssin(ωst) + δscos(ωst)
)

with Fourier frequencies ωs.
For the weekly measles data ωs = 2sπ/52 (i.e. period=52). In the

following, the model specified in cntrl is fitted to the data.

> cntrl <- list(linear = TRUE, nseason = 1, neighbours = TRUE,

+ negbin = "single", lambda = TRUE)

The counts are assumed to be negative binomial distributed with mean µit

and variance µit + µ2
it/ψ. A linear time trend β, seasonal parameters γ1

and β1 (i.e. S = 1) as well as the autoregressive parameters λ and φ are
included to specify the mean. All in all, there are 2S+m+ 4 parameters to
be estimated for the negative binomial model. In case of a Poisson model,
the number of parameters reduces by one as the overdispersion parameter
ψ is omitted.

> measles.hhh <- algo.hhh(measles.weser, control = cntrl)

12

Depending on the initial values for the parameters, the optimization
algorithm might not converge or only find a local maximum as the parameter
space is high-dimensional. It is therefore reasonable to try multiple starting
values.

The function create.grid takes a list with elements in the form of
param = c(lower,upper,length) to create a matrix of starting values. For
each parameter a sequence of length length from lower to upper is built
and the resulting grid contains all combinations of these parameter values. A
call to algo.hhh.grid conducts a grid search until either all starting values
are used or a time limit maxTime (in seconds) is exceeded. The result with
the highest likelihood is returned.

> grid <- create.grid(measles.weser, control = cntrl,

+ params = list(endemic = c(lower=-0.5, upper=0.5, length=3),

+ epidemic = c(0.1, 0.9, 5),

+ negbin = c(0.3, 12, 5)))

> measles.hhh.grid <- algo.hhh.grid(measles.weser,

+ control = cntrl, thetastartMatrix = grid, maxTime = 300)

> print(measles.hhh.grid, digits = 3)

size of grid: 375

convergences: 99

time needed (in seconds) 97.328

values of log-likelihood:

-910

99

Estimated parameters and standard errors:

Estimates Std.Error

3402 2.048 0.335

3403 -0.481 0.411

3404 -1.914 0.652

3451 -1.216 0.708

3452 0.742 0.339

3453 -0.197 0.448

3454 0.071 0.332

3455 -2.165 1.274

3456 -2.101 0.766

3457 2.254 0.277

3458 -0.812 0.482

3459 -0.596 0.374

13

3460 -1.263 0.542

3461 0.315 0.391

3462 -0.662 0.612

lambda 0.498 0.074

phi 0.001 0.003

t 0.012 0.004

A(2 * pi * t/52) 1.447 0.163

s(2 * pi * t/52) -0.419 0.089

1/psi 1.738 0.228

log-likelihood: -910.3

AIC: 1862.5

BIC: 1974.7

lag used for lambda: 1

lag used for phi: 1

number of observations: 1545

5 Discussion and Future Work

Many extensions and additions are imaginable to improve the package. For
now, the package is intended as an academic tool providing a test-bench
for integrating new surveillance algorithms. Because all algorithms are im-
plemented in R, performance has not been an issue. Especially the current
implementation of the Farrington Procedure is rather slow and would benefit
from an optimization possible with fragments written in C.

One important improvement would be to provide more involved mech-
anisms for the simulation of epidemics. In particular it would be interest-
ing to include multi-day outbreaks originating from single-source exposure,
but with delay due to varying incubation time (Hutwagner et al., 2005)
or SEIR-like epidemics (Andersson and Britton, 2000). However, defining
what is meant by a correct outbreak identification, especially in the case of
overlapping outbreaks, creates new challenges which have to be met.

6 Acknowledgements

We are grateful to K. Stark and D. Altmann, RKI, Germany, for discussions
and information on the surveillance methods used by the RKI. Our thanks
to C. Lang, University of Munich, for his work on the R–implementation and
M. Kobl, T. Schuster and M. Rossman, University of Munich, for their initial
work on gathering the outbreak data from SurvStat@RKI. The research was
conducted with financial support from the Collaborative Research Centre
SFB 386 funded by the German research foundation (DFG).

14

References

Altmann, D. (2003). The surveillance system of the Robert Koch Institute,
Germany. Personal communication.

Andersson, H. and Britton, T. (2000). Stochastic Epidemic Models and their
Statistical Analysis, volume 151 of Springer Lectures Notes in Statistics.
Springer-Verlag.

Farrington, C. P., Andrews, N. J., Beale, A. D., and Catchpole, M. A. (1996).
A statistical algorithm for the early detection of outbreaks of infectious
disease. Journal of the Royal Statistical Society. Series A (Statistics in
Society), 159:547–563.

Farrington, P. and Andrews, N. (2003). Outbreak detection: Application
to infectious disease surveillance. In Brookmeyer, R. and Stroup, D. F.,
editors, Monitoring the Health of Populations, chapter 8, pages 203–231.
Oxford University Press.

Held, L., Höhle, M., and Hofmann, M. (2005). A statistical framework for the
analysis of multivariate infectious disease surveillance counts. Statistical
Modelling, 5(3):187–199.

Hutwagner, L., Browne, T., Seeman, G., and Fleischhauer, A. (2005). Com-
paring abberration detection methods with simulated data. Emerging
Infectious Diseases, 11:314–316.

Meyer, S., Held, L., and Höhle, M. (2017). Spatio-temporal analysis of
epidemic phenomena using the R package surveillance. Journal of Sta-
tistical Software, 77(11):1–55.

Riebler, A. (2004). Empirischer Vergleich von statistischen Methoden zur
Ausbruchserkennung bei Surveillance Daten. Bachelor’s thesis, Depart-
ment of Statistics, University of Munich.

Robert Koch-Institut (2004). SurvStat@RKI. http://www3.rki.de/

SurvStat. Date of query: September 2004.

Robert Koch Institute (2001). Epidemiologisches Bulletin 39. Available from
http://www.rki.de.

Salmon, M., Schumacher, D., and Höhle, M. (2016). Monitoring count time
series in R: Aberration detection in public health surveillance. Journal of
Statistical Software, 70(10):1–35.

Stroup, D., Williamson, G., Herndon, J., and Karon, J. (1989). Detection
of aberrations in the occurrence of notifiable diseases surveillance data.
Statistics in Medicine, 8:323–329.

15

http://www3.rki.de/SurvStat
http://www3.rki.de/SurvStat

	Introduction
	Surveillance Data
	Surveillance Algorithms
	Multivariate Surveillance
	Discussion and Future Work
	Acknowledgements

