Public Member Functions | Protected Member Functions
MittelmannBndryCntrlNeum3 Class Reference

Class implementating Example 7. More...

#include <MittelmannBndryCntrlNeum.hpp>

Inheritance diagram for MittelmannBndryCntrlNeum3:
MittelmannBndryCntrlNeumBase RegisteredTNLP Ipopt::TNLP Ipopt::ReferencedObject

List of all members.

Public Member Functions

 MittelmannBndryCntrlNeum3 ()
virtual ~MittelmannBndryCntrlNeum3 ()
virtual bool InitializeProblem (Index N)
 Initialize internal parameters, where N is a parameter determining the problme size.

Protected Member Functions

virtual Number y_d_cont (Number x1, Number x2) const
 Target profile function for y.
virtual Number d_cont (Number x1, Number x2, Number y) const
 Forcing function for the elliptic equation.
virtual Number d_cont_dy (Number x1, Number x2, Number y) const
 First partial derivative of forcing function w.r.t.
virtual Number d_cont_dydy (Number x1, Number x2, Number y) const
 Second partial derivative of forcing function w.r.t y,y.
virtual bool d_cont_dydy_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.
virtual Number b_cont (Number x1, Number x2, Number y, Number u) const
 Function in Neuman boundary condition.
virtual Number b_cont_dy (Number x1, Number x2, Number y, Number u) const
 First partial derivative of b_cont w.r.t.
virtual Number b_cont_du (Number x1, Number x2, Number y, Number u) const
 First partial derivative of b_cont w.r.t.
virtual Number b_cont_dydy (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of b_cont w.r.t.
virtual bool b_cont_dydy_alwayszero () const
 returns true if second partial derivative of b_cont w.r.t.

Private Member Functions

hide implicitly defined contructors copy operators
 MittelmannBndryCntrlNeum3 (const MittelmannBndryCntrlNeum3 &)
MittelmannBndryCntrlNeum3operator= (const MittelmannBndryCntrlNeum3 &)

Detailed Description

Class implementating Example 7.

Definition at line 417 of file MittelmannBndryCntrlNeum.hpp.


Constructor & Destructor Documentation

MittelmannBndryCntrlNeum3::MittelmannBndryCntrlNeum3 ( ) [inline]

Definition at line 420 of file MittelmannBndryCntrlNeum.hpp.

virtual MittelmannBndryCntrlNeum3::~MittelmannBndryCntrlNeum3 ( ) [inline, virtual]

Definition at line 423 of file MittelmannBndryCntrlNeum.hpp.

MittelmannBndryCntrlNeum3::MittelmannBndryCntrlNeum3 ( const MittelmannBndryCntrlNeum3 ) [private]

Member Function Documentation

virtual bool MittelmannBndryCntrlNeum3::InitializeProblem ( Index  N) [inline, virtual]

Initialize internal parameters, where N is a parameter determining the problme size.

This returns false, if N has an invalid value.

Implements RegisteredTNLP.

Definition at line 426 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum3::y_d_cont ( Number  x1,
Number  x2 
) const [inline, protected, virtual]

Target profile function for y.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 444 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum3::d_cont ( Number  x1,
Number  x2,
Number  y 
) const [inline, protected, virtual]

Forcing function for the elliptic equation.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 449 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum3::d_cont_dy ( Number  x1,
Number  x2,
Number  y 
) const [inline, protected, virtual]

First partial derivative of forcing function w.r.t.

y

Implements MittelmannBndryCntrlNeumBase.

Definition at line 454 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum3::d_cont_dydy ( Number  x1,
Number  x2,
Number  y 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t y,y.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 459 of file MittelmannBndryCntrlNeum.hpp.

virtual bool MittelmannBndryCntrlNeum3::d_cont_dydy_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,y is always zero.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 465 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum3::b_cont ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Function in Neuman boundary condition.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 470 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum3::b_cont_dy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of b_cont w.r.t.

y

Implements MittelmannBndryCntrlNeumBase.

Definition at line 475 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum3::b_cont_du ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of b_cont w.r.t.

u

Implements MittelmannBndryCntrlNeumBase.

Definition at line 480 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum3::b_cont_dydy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of b_cont w.r.t.

y,y

Implements MittelmannBndryCntrlNeumBase.

Definition at line 485 of file MittelmannBndryCntrlNeum.hpp.

virtual bool MittelmannBndryCntrlNeum3::b_cont_dydy_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of b_cont w.r.t.

y,y is always zero.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 491 of file MittelmannBndryCntrlNeum.hpp.

MittelmannBndryCntrlNeum3& MittelmannBndryCntrlNeum3::operator= ( const MittelmannBndryCntrlNeum3 ) [private]

The documentation for this class was generated from the following file: