Public Member Functions | Protected Member Functions
MittelmannBndryCntrlNeum1 Class Reference

Class implementating Example 5. More...

#include <MittelmannBndryCntrlNeum.hpp>

Inheritance diagram for MittelmannBndryCntrlNeum1:
MittelmannBndryCntrlNeumBase RegisteredTNLP Ipopt::TNLP Ipopt::ReferencedObject

List of all members.

Public Member Functions

 MittelmannBndryCntrlNeum1 ()
virtual ~MittelmannBndryCntrlNeum1 ()
virtual bool InitializeProblem (Index N)
 Initialize internal parameters, where N is a parameter determining the problme size.

Protected Member Functions

virtual Number y_d_cont (Number x1, Number x2) const
 Target profile function for y.
virtual Number d_cont (Number x1, Number x2, Number y) const
 Forcing function for the elliptic equation.
virtual Number d_cont_dy (Number x1, Number x2, Number y) const
 First partial derivative of forcing function w.r.t.
virtual Number d_cont_dydy (Number x1, Number x2, Number y) const
 Second partial derivative of forcing function w.r.t y,y.
virtual bool d_cont_dydy_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.
virtual Number b_cont (Number x1, Number x2, Number y, Number u) const
 Function in Neuman boundary condition.
virtual Number b_cont_dy (Number x1, Number x2, Number y, Number u) const
 First partial derivative of b_cont w.r.t.
virtual Number b_cont_du (Number x1, Number x2, Number y, Number u) const
 First partial derivative of b_cont w.r.t.
virtual Number b_cont_dydy (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of b_cont w.r.t.
virtual bool b_cont_dydy_alwayszero () const
 returns true if second partial derivative of b_cont w.r.t.

Private Member Functions

hide implicitly defined contructors copy operators
 MittelmannBndryCntrlNeum1 (const MittelmannBndryCntrlNeum1 &)
MittelmannBndryCntrlNeum1operator= (const MittelmannBndryCntrlNeum1 &)

Detailed Description

Class implementating Example 5.

Definition at line 243 of file MittelmannBndryCntrlNeum.hpp.


Constructor & Destructor Documentation

MittelmannBndryCntrlNeum1::MittelmannBndryCntrlNeum1 ( ) [inline]

Definition at line 246 of file MittelmannBndryCntrlNeum.hpp.

virtual MittelmannBndryCntrlNeum1::~MittelmannBndryCntrlNeum1 ( ) [inline, virtual]

Definition at line 249 of file MittelmannBndryCntrlNeum.hpp.

MittelmannBndryCntrlNeum1::MittelmannBndryCntrlNeum1 ( const MittelmannBndryCntrlNeum1 ) [private]

Member Function Documentation

virtual bool MittelmannBndryCntrlNeum1::InitializeProblem ( Index  N) [inline, virtual]

Initialize internal parameters, where N is a parameter determining the problme size.

This returns false, if N has an invalid value.

Implements RegisteredTNLP.

Definition at line 252 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum1::y_d_cont ( Number  x1,
Number  x2 
) const [inline, protected, virtual]

Target profile function for y.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 270 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum1::d_cont ( Number  x1,
Number  x2,
Number  y 
) const [inline, protected, virtual]

Forcing function for the elliptic equation.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 275 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum1::d_cont_dy ( Number  x1,
Number  x2,
Number  y 
) const [inline, protected, virtual]

First partial derivative of forcing function w.r.t.

y

Implements MittelmannBndryCntrlNeumBase.

Definition at line 280 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum1::d_cont_dydy ( Number  x1,
Number  x2,
Number  y 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t y,y.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 285 of file MittelmannBndryCntrlNeum.hpp.

virtual bool MittelmannBndryCntrlNeum1::d_cont_dydy_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,y is always zero.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 291 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum1::b_cont ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Function in Neuman boundary condition.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 296 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum1::b_cont_dy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of b_cont w.r.t.

y

Implements MittelmannBndryCntrlNeumBase.

Definition at line 301 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum1::b_cont_du ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of b_cont w.r.t.

u

Implements MittelmannBndryCntrlNeumBase.

Definition at line 306 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum1::b_cont_dydy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of b_cont w.r.t.

y,y

Implements MittelmannBndryCntrlNeumBase.

Definition at line 311 of file MittelmannBndryCntrlNeum.hpp.

virtual bool MittelmannBndryCntrlNeum1::b_cont_dydy_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of b_cont w.r.t.

y,y is always zero.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 317 of file MittelmannBndryCntrlNeum.hpp.

MittelmannBndryCntrlNeum1& MittelmannBndryCntrlNeum1::operator= ( const MittelmannBndryCntrlNeum1 ) [private]

The documentation for this class was generated from the following file: