Class implementating Example 7. More...
#include <MittelmannBndryCntrlNeum.hpp>
Public Member Functions | |
MittelmannBndryCntrlNeum3 () | |
virtual | ~MittelmannBndryCntrlNeum3 () |
virtual bool | InitializeProblem (Index N) |
Initialize internal parameters, where N is a parameter determining the problme size. | |
Protected Member Functions | |
virtual Number | y_d_cont (Number x1, Number x2) const |
Target profile function for y. | |
virtual Number | d_cont (Number x1, Number x2, Number y) const |
Forcing function for the elliptic equation. | |
virtual Number | d_cont_dy (Number x1, Number x2, Number y) const |
First partial derivative of forcing function w.r.t. | |
virtual Number | d_cont_dydy (Number x1, Number x2, Number y) const |
Second partial derivative of forcing function w.r.t y,y. | |
virtual bool | d_cont_dydy_alwayszero () const |
returns true if second partial derivative of d_cont w.r.t. | |
virtual Number | b_cont (Number x1, Number x2, Number y, Number u) const |
Function in Neuman boundary condition. | |
virtual Number | b_cont_dy (Number x1, Number x2, Number y, Number u) const |
First partial derivative of b_cont w.r.t. | |
virtual Number | b_cont_du (Number x1, Number x2, Number y, Number u) const |
First partial derivative of b_cont w.r.t. | |
virtual Number | b_cont_dydy (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of b_cont w.r.t. | |
virtual bool | b_cont_dydy_alwayszero () const |
returns true if second partial derivative of b_cont w.r.t. | |
Private Member Functions | |
hide implicitly defined contructors copy operators | |
MittelmannBndryCntrlNeum3 (const MittelmannBndryCntrlNeum3 &) | |
MittelmannBndryCntrlNeum3 & | operator= (const MittelmannBndryCntrlNeum3 &) |
Class implementating Example 7.
Definition at line 417 of file MittelmannBndryCntrlNeum.hpp.
MittelmannBndryCntrlNeum3::MittelmannBndryCntrlNeum3 | ( | ) | [inline] |
Definition at line 420 of file MittelmannBndryCntrlNeum.hpp.
virtual MittelmannBndryCntrlNeum3::~MittelmannBndryCntrlNeum3 | ( | ) | [inline, virtual] |
Definition at line 423 of file MittelmannBndryCntrlNeum.hpp.
MittelmannBndryCntrlNeum3::MittelmannBndryCntrlNeum3 | ( | const MittelmannBndryCntrlNeum3 & | ) | [private] |
virtual bool MittelmannBndryCntrlNeum3::InitializeProblem | ( | Index | N | ) | [inline, virtual] |
Initialize internal parameters, where N is a parameter determining the problme size.
This returns false, if N has an invalid value.
Implements RegisteredTNLP.
Definition at line 426 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum3::y_d_cont | ( | Number | x1, |
Number | x2 | ||
) | const [inline, protected, virtual] |
Target profile function for y.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 444 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum3::d_cont | ( | Number | x1, |
Number | x2, | ||
Number | y | ||
) | const [inline, protected, virtual] |
Forcing function for the elliptic equation.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 449 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum3::d_cont_dy | ( | Number | x1, |
Number | x2, | ||
Number | y | ||
) | const [inline, protected, virtual] |
First partial derivative of forcing function w.r.t.
y
Implements MittelmannBndryCntrlNeumBase.
Definition at line 454 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum3::d_cont_dydy | ( | Number | x1, |
Number | x2, | ||
Number | y | ||
) | const [inline, protected, virtual] |
Second partial derivative of forcing function w.r.t y,y.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 459 of file MittelmannBndryCntrlNeum.hpp.
virtual bool MittelmannBndryCntrlNeum3::d_cont_dydy_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 465 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum3::b_cont | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Function in Neuman boundary condition.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 470 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum3::b_cont_dy | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
First partial derivative of b_cont w.r.t.
y
Implements MittelmannBndryCntrlNeumBase.
Definition at line 475 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum3::b_cont_du | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
First partial derivative of b_cont w.r.t.
u
Implements MittelmannBndryCntrlNeumBase.
Definition at line 480 of file MittelmannBndryCntrlNeum.hpp.
virtual Number MittelmannBndryCntrlNeum3::b_cont_dydy | ( | Number | x1, |
Number | x2, | ||
Number | y, | ||
Number | u | ||
) | const [inline, protected, virtual] |
Second partial derivative of b_cont w.r.t.
y,y
Implements MittelmannBndryCntrlNeumBase.
Definition at line 485 of file MittelmannBndryCntrlNeum.hpp.
virtual bool MittelmannBndryCntrlNeum3::b_cont_dydy_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of b_cont w.r.t.
y,y is always zero.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 491 of file MittelmannBndryCntrlNeum.hpp.
MittelmannBndryCntrlNeum3& MittelmannBndryCntrlNeum3::operator= | ( | const MittelmannBndryCntrlNeum3 & | ) | [private] |