Public Member Functions | Protected Member Functions | Private Attributes
MittelmannDistCntrlNeumB2 Class Reference

Class implementating Example 5. More...

#include <MittelmannDistCntrlNeumB.hpp>

Inheritance diagram for MittelmannDistCntrlNeumB2:
MittelmannDistCntrlNeumBBase RegisteredTNLP Ipopt::TNLP Ipopt::ReferencedObject

List of all members.

Public Member Functions

 MittelmannDistCntrlNeumB2 ()
virtual ~MittelmannDistCntrlNeumB2 ()
virtual bool InitializeProblem (Index N)
 Initialize internal parameters, where N is a parameter determining the problme size.

Protected Member Functions

virtual Number y_d_cont (Number x1, Number x2) const
 Target profile function for y.
virtual Number fint_cont (Number x1, Number x2, Number y, Number u) const
 Integrant in objective function.
virtual Number fint_cont_dy (Number x1, Number x2, Number y, Number u) const
 First partial derivative of fint_cont w.r.t.
virtual Number fint_cont_du (Number x1, Number x2, Number y, Number u) const
 First partial derivative of fint_cont w.r.t.
virtual Number fint_cont_dydy (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of fint_cont w.r.t.
virtual bool fint_cont_dydy_alwayszero () const
 returns true if second partial derivative of fint_cont w.r.t.
virtual Number fint_cont_dudu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of fint_cont w.r.t.
virtual bool fint_cont_dudu_alwayszero () const
 returns true if second partial derivative of fint_cont w.r.t.
virtual Number fint_cont_dydu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of fint_cont w.r.t.
virtual bool fint_cont_dydu_alwayszero () const
 returns true if second partial derivative of fint_cont w.r.t.
virtual Number d_cont (Number x1, Number x2, Number y, Number u) const
 Forcing function for the elliptic equation.
virtual Number d_cont_dy (Number x1, Number x2, Number y, Number u) const
 First partial derivative of forcing function w.r.t.
virtual Number d_cont_du (Number x1, Number x2, Number y, Number u) const
 First partial derivative of forcing function w.r.t.
virtual Number d_cont_dydy (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of forcing function w.r.t y,y.
virtual bool d_cont_dydy_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.
virtual Number d_cont_dudu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of forcing function w.r.t.
virtual bool d_cont_dudu_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.
virtual Number d_cont_dydu (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of forcing function w.r.t.
virtual bool d_cont_dydu_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.

Private Member Functions

hide implicitly defined contructors copy operators
 MittelmannDistCntrlNeumB2 (const MittelmannDistCntrlNeumB2 &)
MittelmannDistCntrlNeumB2operator= (const MittelmannDistCntrlNeumB2 &)

Private Attributes

const Number pi_
 Value of pi (made available for convenience)

Detailed Description

Class implementating Example 5.

Definition at line 412 of file MittelmannDistCntrlNeumB.hpp.


Constructor & Destructor Documentation

MittelmannDistCntrlNeumB2::MittelmannDistCntrlNeumB2 ( ) [inline]

Definition at line 415 of file MittelmannDistCntrlNeumB.hpp.

virtual MittelmannDistCntrlNeumB2::~MittelmannDistCntrlNeumB2 ( ) [inline, virtual]

Definition at line 420 of file MittelmannDistCntrlNeumB.hpp.

MittelmannDistCntrlNeumB2::MittelmannDistCntrlNeumB2 ( const MittelmannDistCntrlNeumB2 ) [private]

Member Function Documentation

virtual bool MittelmannDistCntrlNeumB2::InitializeProblem ( Index  N) [inline, virtual]

Initialize internal parameters, where N is a parameter determining the problme size.

This returns false, if N has an invalid value.

Implements RegisteredTNLP.

Definition at line 423 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::y_d_cont ( Number  x1,
Number  x2 
) const [inline, protected, virtual]

Target profile function for y.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 444 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::fint_cont ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Integrant in objective function.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 449 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::fint_cont_dy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of fint_cont w.r.t.

y

Implements MittelmannDistCntrlNeumBBase.

Definition at line 455 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::fint_cont_du ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of fint_cont w.r.t.

u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 461 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::fint_cont_dydy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of fint_cont w.r.t.

y,y

Implements MittelmannDistCntrlNeumBBase.

Definition at line 466 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB2::fint_cont_dydy_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of fint_cont w.r.t.

y,y is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 472 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::fint_cont_dudu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of fint_cont w.r.t.

u,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 477 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB2::fint_cont_dudu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of fint_cont w.r.t.

u,u is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 483 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::fint_cont_dydu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of fint_cont w.r.t.

y,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 488 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB2::fint_cont_dydu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of fint_cont w.r.t.

y,u is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 494 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::d_cont ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Forcing function for the elliptic equation.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 499 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::d_cont_dy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of forcing function w.r.t.

y

Implements MittelmannDistCntrlNeumBBase.

Definition at line 504 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::d_cont_du ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of forcing function w.r.t.

u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 509 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::d_cont_dydy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t y,y.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 514 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB2::d_cont_dydy_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,y is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 520 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::d_cont_dudu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t.

u,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 525 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB2::d_cont_dudu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,y is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 531 of file MittelmannDistCntrlNeumB.hpp.

virtual Number MittelmannDistCntrlNeumB2::d_cont_dydu ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t.

y,u

Implements MittelmannDistCntrlNeumBBase.

Definition at line 536 of file MittelmannDistCntrlNeumB.hpp.

virtual bool MittelmannDistCntrlNeumB2::d_cont_dydu_alwayszero ( ) const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,u is always zero.

Implements MittelmannDistCntrlNeumBBase.

Definition at line 542 of file MittelmannDistCntrlNeumB.hpp.

MittelmannDistCntrlNeumB2& MittelmannDistCntrlNeumB2::operator= ( const MittelmannDistCntrlNeumB2 ) [private]

Member Data Documentation

Value of pi (made available for convenience)

Definition at line 553 of file MittelmannDistCntrlNeumB.hpp.


The documentation for this class was generated from the following file: