data-inttrie-0.1.4: A simple lazy, infinite trie from integers
Copyright(c) Luke Palmer 2010
LicenseBSD3
MaintainerLuke Palmer <lrpalmer@gmail.com>
Stabilityexperimental
PortabilityHaskell 2010
Safe HaskellSafe
LanguageHaskell2010

Data.IntTrie

Description

Provides a minimal infinite, lazy trie for integral types. It intentionally leaves out ideas such as delete and emptiness so that it can be used lazily, eg. as the target of an infinite foldr. Essentially its purpose is to be an efficient implementation of a function from integral type, given point-at-a-time modifications.

Synopsis

Documentation

data IntTrie a Source #

A trie from integers to values of type a.

Semantics: [[IntTrie a]] = Integer -> a

Instances

Instances details
Functor IntTrie Source # 
Instance details

Defined in Data.IntTrie

Methods

fmap :: (a -> b) -> IntTrie a -> IntTrie b

(<$) :: a -> IntTrie b -> IntTrie a

Applicative IntTrie Source # 
Instance details

Defined in Data.IntTrie

Methods

pure :: a -> IntTrie a

(<*>) :: IntTrie (a -> b) -> IntTrie a -> IntTrie b

liftA2 :: (a -> b -> c) -> IntTrie a -> IntTrie b -> IntTrie c

(*>) :: IntTrie a -> IntTrie b -> IntTrie b

(<*) :: IntTrie a -> IntTrie b -> IntTrie a

Semigroup a => Semigroup (IntTrie a) Source # 
Instance details

Defined in Data.IntTrie

Methods

(<>) :: IntTrie a -> IntTrie a -> IntTrie a

sconcat :: NonEmpty (IntTrie a) -> IntTrie a

stimes :: Integral b => b -> IntTrie a -> IntTrie a

Monoid a => Monoid (IntTrie a) Source # 
Instance details

Defined in Data.IntTrie

Methods

mempty :: IntTrie a

mappend :: IntTrie a -> IntTrie a -> IntTrie a

mconcat :: [IntTrie a] -> IntTrie a

identity :: (Num a, Bits a) => IntTrie a Source #

The identity trie.

apply identity = id

apply :: (Ord b, Num b, Bits b) => IntTrie a -> b -> a Source #

Apply the trie to an argument. This is the semantic map.

modify :: (Ord b, Num b, Bits b) => b -> (a -> a) -> IntTrie a -> IntTrie a Source #

Modify the function at one point

apply (modify x f t) i | i == x = f (apply t i)
                       | otherwise = apply t i

modify' :: (Ord b, Num b, Bits b) => b -> (a -> a) -> IntTrie a -> IntTrie a Source #

Modify the function at one point (strict version)

overwrite :: (Ord b, Num b, Bits b) => b -> a -> IntTrie a -> IntTrie a Source #

Overwrite the function at one point

overwrite i x = modify i (const x)

mirror :: IntTrie a -> IntTrie a Source #

Negate the domain of the function

apply (mirror t) i = apply t (-i)
mirror . mirror = id

modifyAscList :: (Ord b, Num b, Bits b) => [(b, a -> a)] -> IntTrie a -> IntTrie a Source #

Modify the function at a (potentially infinite) list of points in ascending order

modifyAscList [(i0, f0)..(iN, fN)] = modify i0 f0 . ... . modify iN fN

modifyDescList :: (Ord b, Num b, Bits b) => [(b, a -> a)] -> IntTrie a -> IntTrie a Source #

Modify the function at a (potentially infinite) list of points in descending order