
Managing Scientific Workflows in Python with
pyutilib.workflow

William E. Hart∗

September 5, 2011

Abstract

We describe the capabilities of the pyutilib.workflow software package. This
package provides Python classes that provide an intuitive interface for defining and ex-
ecuting scientific workflows. Further, pyutilib.workflow is a native Python package,
so it can be used to define workflows within Python software applications. Addition-
ally, pyutilib.workflow includes a utility for creating a command-line driver that
execute workflows as subcommands of a command-line script.

∗Sandia National Laboratories, Data Analysis and Informatics Department, PO Box 5800, Albuquerque,
NM 87185; wehart@sandia.gov

1

1 Introduction

Scientific workflow is an increasingly popular strategy for managing complex scientific com-
putation processes. Workflows allow scientists to automate data transformations, describe
complex computational procedures, and parallelize these analyses. Scientific workflow sys-
tems are closely related to workflow models used in business process management systems.
The key difference is that scientific workflows focus on the transformation of data through
algorithms, whereas business workflows focus on scheduling and execution of tasks.

Many of the workflow packages developed in Python are best described as business work-
flow systems. For example, packages like django-workflows and zope.app.workflow pro-
vide workflows for web content management. The following native Python workflow packages
appear to be suitable for scientific workflows:

• Pyphant : This is a framework for scientific data analysis. A computational analysis is
defined by a graph of processing steps, which is managed with a workflow engine.

• Python Workflow Engine: This is a simple workflow engine that was initially based on
the workflow engine used in the ACE project.

• Spiff Workflow : This package is designed around the workflow patterns defined at
http://www.workflowpatterns.com.

• Ruffus : This is a lightweight python module to run computational pipelines (See
http://www.ruffus.org.uk/).

• PaPy : A lightweight python package that manages parallel computational pipelines
(see http://muralab.org/PaPy/)

Other packages like VisTrails [4] and Weaver [1] also support the management of scien-
tific workflows in Python, though they rely on external software packages to execute these
workflows.

This report describes the pyutilib.workflow (PW) package, which supports the defini-
tion and execution of scientific workflows. The following key features of PW that distinguish
it from other Python workflow tools:

• PW is a self-contained package that was designed to be used within other software
applications. Although PW depends on several other PyUtilib Python packages, it
does not rely on external software packages to execute PW workflows.

• PW defines a workflow through the interaction of task objects, rather than an explicit
definition of a workflow graph. For example, a connection between two tasks is created
by setting an output in one task equal to an input in the other.

• a PW workflow (or task) can be treated as a functor that executes with the given
arguments and returns a dictionary of computed data.

2

• PW tasks can be created as plugin components that can be dynamically created with
a task factory. This supports the modular definition of tasks and workflows, and it
allows the definition of workflows to be isolated from the definition of task classes.

• PW workflows can be initialized with command-line arguments. Further, PW includes
a command-line driver that can executed named workflows using a subcommand syntax
that is commonly used in command-line tools (e.g. svn).

The remainder of this manuscript provides a detailed description of the capabilities in
PW. We include many examples that illustrate how PW objects interact to define and execute
workflows, and we discuss the command-line driver that can execute workflows with values
specified by command-line arguments.

2 Managing Workflows

2.1 Overview

Figure 1 provides a graphical illustration of the components of a workflow. A workflow is
comprised of one or more computational steps, which we call a task or component. A task
maps a set of input data into a set of output data. Input and output data are managed with
port objects, and tasks are linked together with connectors that define a connection from
an output port in one task to an input port for another. These connections form a directed
acyclic graph (DAG), which defines how task executions need to be coordinated to correctly
execute the entire workflow.

2.2 A Simple Example

The main goal of PW is to support the definition of workflows in an intuitive manner using
Python objects. There are two fundamental classes defined by PW that are used to define a
workflow: Task and Workflow. A user defines tasks by creating subclasses of the Task class.
For example, the following task computes the sum of its two inputs:

class TaskA(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’x’)

self.inputs.declare(’y’)

self.outputs.declare(’z’)

def execute(self):

"""Compute the sum of the inputs."""

self.z = self.x + self.y

3

Task1
Inputs

Outputs

Task3
Inputs

Outputs
Task2

Inputs

Outputs

Inputs
Task4

Inputs

Outputs

Figure 1: A graphical illustration of a workflow with four tasks. Black lines between tasks
represent connectors, and square boxes in the tasks represent the input and output ports.

The Task class defines the inputs and outputs attributes that are used to respectively
declare input and output ports. These declarations must be included in the task constructor,
since the inputs and outputs are treated as static task properties by PW.

The task computation is performed by the execute method, which must be defined by
the user. Note that the input and output values are attributes of the task object. This
simplifies the syntax for users developing task computations by allowing them to treat task
data as they would in any other Python object. PW initializes the value of these attributes
before calling execute, and it interrogates the task afterwards to set the value of the output
ports.

The following Python code creates the TaskA object, creates a Workflow object, initializes
the workflow with this task, and then executes the workflow with input values:

A = TaskA()

w = pyutilib.workflow.Workflow()

w.add(A)

4

print w(x=1, y=3)

Note that the workflow defines a functor, which is executed with keyword arguments that
are mapped to the task inputs. This functor returns an Options object, which is a glorified
Python dict class. The output of printing the workflow results is:

Options:

z = 4

2.3 Defining Connections

The previous example was a trivial illustration of the setup and execution of a workflow.
In practice, workflows will be defined by constructing two or more tasks that are linked
together. Suppose we wish to compute the expression:

z = 2 ∗ x + y.

We can employ TaskA to perform the sum, and the following task to double the value of x:

class TaskB(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’X’)

self.outputs.declare(’Z’)

def execute(self):

"""Compute the sum of the inputs."""

self.Z = 2*self.X

The following Python code creates the TaskA and TaskB objects, links the output of B
to the input of A, and then creates and executes a workflow:

A = TaskA()

B = TaskB()

A.inputs.x = B.outputs.Z

w = pyutilib.workflow.Workflow()

w.add(A)

print w(X=1, y=3)

The connection between TaskA and TaskB is defined with the command

A.inputs.x = B.outputs.Z

The syntax transparently creates a Connector object that connects the Z output of TaskB to
the x input of TaskA. This greatly simplifies the declaration of connections when compared
with other Python workflow packages. Note that this mechanism allows an output port to
be connected to one or more input ports. The default setup of ports allows an input port to
only connect to a single output port. (See Section 2.4 for further discussion.)

5

As in our earlier example, the workflow is created by constructing a Workflow object and
then adding tasks to it. Note, however, that in this example only TaskA was added. The
Workflow object traverses the connections between tasks to identify all tasks connected to
the task that is added. Consequently, only a single task in a workflow needs to be added to
the Workflow object.

Note that the functor defined by the workflow has a slightly different API in this example;
it uses inputs X and y. To understand why, consider Figure 2, which shows the workflow
in this example. Tasks TaskA and TaskB are connected to each other, but also to a start
and end task. The start and end tasks are constructed when a Workflow object loads the
workflow. The start task contains outputs that correspond to every input port that is not
connected to an output port. Similarly, the end task contains inputs that correspond to
every output port that is not connect to an input port. In this way, the inputs and outputs
of the workflow are automatically defined.

StartTask
Inputs

Outputs X y

Inputs X
TaskB

Outputs Z

TaskA
Inputs

Outputs z

x y

Outputs z

Inputs z
EndTask

p

Outputs

Figure 2: An illustration of the workflow defined with tasks TaskA and TaskB.

To see further implications of this logic, suppose that TaskC is used instead of TaskB:

6

Inputs
StartTask

Inputs

Outputs X y

TaskC
Inputs X y

I t

Outputs W Z

TaskA
Inputs

Outputs z

x y

EndTask
Inputs W z

Outputs

Figure 3: An illustration of the workflow defined with tasks TaskA and TaskC.

class TaskC(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’X’)

self.inputs.declare(’y’)

self.outputs.declare(’W’)

self.outputs.declare(’Z’)

def execute(self):

"""Compute the sum of the inputs."""

self.W = self.X+self.y

self.Z = 2*self.W

Figure 3 shows the workflow for this example. The setup and execution of this task does
not change. However, the input y is now used by both tasks TaskA and TaskC. Further, the

7

output W is now included in the final results. The output of printing the workflow results is:

Options:

W = 4

z = 11

Similarly, the following example uses TaskD instead of TaskB:

class TaskD(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’X’)

self.inputs.declare(’y’)

self.inputs.declare(’a’, constant=True)

self.outputs.declare(’W’)

self.outputs.declare(’Z’)

def execute(self):

"""Compute the sum of the inputs."""

self.W = self.X+self.y+self.a

self.Z = 2*self.W

The input a is a constant value that is not included in the outputs of the start task. However,
this value can be set directly using the TaskD object. The output of printing the workflow
results is:

Options:

W = 104

z = 211

2.4 Input Ports with Multiple Connections

The action constructor option for the Port class defines how input connections are used to
compute the input value. The default action is store, which indicates that the connector
value is stored in the port. This behavior reflects the previous examples, and it is well-suited
for workflows where there is a direct correspondence between output ports and input ports.

However, contexts often arise in practice where a suite of tasks needs to be computed and
their results are analyzed together. For example, consider TaskD which generalizes TaskA to
sum an arbitrary number of inputs:

class TaskD(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’x’, action=’append’)

self.outputs.declare(’z’)

def execute(self):

8

"""Compute the sum of the inputs."""

self.z = sum(self.x)

Note that the input port x is defined with the append action, which configures it to create
a list of input values.

The following example use TaskD to define a workflow with inputs from TaskE, which
generates a random integer value:

class TaskE(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’Y’)

self.outputs.declare(’Z’)

def execute(self):

"""Compute the sum of the inputs."""

self.Z = random.randint(1,self.Y)

random.seed(123809870128)

D = TaskD()

for i in range(100):

E = TaskE()

D.inputs.x = E.outputs.Z

w = pyutilib.workflow.Workflow()

w.add(D)

print w(Y=100)

In this example, TaskE objects are created and connected to the TaskD object with the
command:

D.inputs.x = E.outputs.Z

The input x port is configured to append inputs to a list, and no special syntax is needed to
indicate how the connections are configured between the x port and the Z ports.

The map action can also be specified to define an input as a dictionary with keys that are
the task ids from the connection that generated the values. For example, this can be used
to associate data generated in different branches of a workflow. The following example uses
this associate to define a dictionary, which is the final result:

class TaskF1(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’a’,)

self.inputs.declare(’aval’)

self.outputs.declare(’a’, self.inputs.a)

self.outputs.declare(’aval’, self.inputs.aval)

9

def execute(self):

pass

class TaskF2(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’A’,)

self.inputs.declare(’Aval’)

self.outputs.declare(’A’, self.inputs.A)

self.outputs.declare(’Aval’, self.inputs.Aval)

def execute(self):

pass

class TaskG(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’x’, action=’map’)

self.inputs.declare(’y’, action=’map’)

self.outputs.declare(’z’)

def execute(self):

"""Compute the sum of the inputs."""

self.z = {}

for key in self.x:

self.z[self.x[key]] = self.y[key]

F1 = TaskF1()

F2 = TaskF2()

G = TaskG()

G.inputs.x = F1.outputs.a

G.inputs.y = F1.outputs.aval

G.inputs.x = F2.outputs.A

G.inputs.y = F2.outputs.Aval

w = pyutilib.workflow.Workflow()

w.add(G)

print w(a=’a’, aval=1, A=’A’, Aval=2)

Tasks TaskF1 and TaskF2 simply map their inputs to outputs. Their outputs are connected
to two inputs in TaskG, and these inputs are used to create a dictionary. The output of this
computation is:

Options:

z = {’a’: 1, ’A’: 2}

Normally, an input port with the store, append or map action cannot be evaluated if
any of the output ports connected to it is not in the ready state. However, the store any,

10

append any and map any actions allow any or all of the inputs to be in a non-ready state.
When the store any action is specified, the value is simply taken from the first connection
that is in the ready state. When the map any action is specified, then a dictionary is formed
from all connections that are in the ready state. Similarly, the append any action appends
all values from connections inthe ready state.

2.5 Using Workflows as Tasks

A key feature of PW is the ability to use workflows as components of other workflows. This
is possible because Workflow is a subclass of Task.

For example, consider the following workflows that are defined with TaskA and TaskC:

A = TaskA()

C = TaskC()

A.inputs.x = C.outputs.Z

w1 = pyutilib.workflow.Workflow()

w1.add(A)

AA = TaskA()

AA.inputs.x = w1.outputs.W

AA.inputs.y = w1.outputs.z

w2 = pyutilib.workflow.Workflow()

w2.add(AA)

print w2(X=1, y=3)

Workflow w1 is the workflow defined in the previous example. This object is used to define
workflow w2, which uses TaskA to sum the outputs of w1: W and z. The output of executing
w2 is

Options:

z = 15

2.6 Initializing Port Values

Task ports are initialized through the execution of a workflow, and through the explicit
specification of port values. The simplest way to specify port values is to define them
directly. For example, consider the following variation of the example in Section 2.2:

A = TaskA()

w = pyutilib.workflow.Workflow()

w.add(A)

A.inputs.x = 1

A.inputs.y = 3

print w()

11

The workflow is constructed as before, but the values of ports x and y are defined explicitly,
and the execution of the workflow does not specify these values.

PW also supports the initialization of port values with command-line options. The goal
of this capability is to facilitate the use of PyUtilib in command-line applications, by allowing
command-line options to be used to directly initialize a workflow. The following example is
a simple extension of the example in Section 2.2.

class TaskAA(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’x’)

self.inputs.declare(’y’)

self.add_argument(’--x’, dest=’x’, type=int)

self.add_argument(’--y’, dest=’y’, type=int)

self.outputs.declare(’z’)

def execute(self):

"""Compute the sum of the inputs."""

self.z = self.x + self.y

AA = TaskAA()

w = pyutilib.workflow.Workflow()

w.add(AA)

w.set_options([’--x=1’, ’--y=3’, ’--bad=4’])

print w()

Some additional logic is added to the TaskAA class to specify the command-line options. In
this example, the set argument method is used to initialize a workflow with a list of option
strings. This syntax mimics the format of data provided by sys.argv. Again, the execution
of the workflow does not specify these values.

Note that port values specified in these ways are viewed as default values for the port.
When a port value is computed from input connections, then the port value will be overriden
if the input connections provide a non-trivial value. For example, if the port action is store,
then the value will be overriden if the input connection has a value other than None. Similarly,
if the port action is append or map, then the value will be overriden if one or more of the
input connections are not None.

Additionally, port values are redefined by the workflow keyword options. For example,
in the following script we initialize input ports for TaskAA, which are then redefined when
the workflow is executed:

AA = TaskAA()

w = pyutilib.workflow.Workflow()

w.add(AA)

w.set_options([’--x=1’, ’--y=3’])

print w(y=4)

The output of this script is

12

Options:

z = 5

which reflects the fact that the value of y was redefined by the workflow keyword option.

2.7 The Task Factory

PW leverages the PyUtilib Component Architecture [3] to support the definition of a task
factory. The PW task factory allows users to create plugin tasks on the fly without requiring
knowledge of where these tasks are defined. This capability exposes a variety of standard
tasks that are defined in PW , and it can be used to create tasks that are defined by third-
party libraries in a standard manner.

The TaskFactory object defined in PW is a functor. This functor can be used to create
a task that has been registered as a plugin. For example, the Selection Task class is
registered with the string ’workflow.selection’, and it can be instantiated as follows:

task = pyutilib.workflow.TaskFactory(’workflow.selection’)

Section 5 describes the predefined tasks that are provided with PW.
A plugin task is created as a subclass of the TaskPlugin class. This registers this task

as a plugin with the PyUtilib Component Architecture. The only additional step required
for a plugin task is to use the alias declaration to define the string that is used to create
this task in the task factory.

For example, the following code defines the task PluginTaskA that is registered with the
string ’TaskA’:

class PluginTaskA(pyutilib.workflow.TaskPlugin):

pyutilib.component.core.alias(’TaskA’)

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’x’)

self.inputs.declare(’y’)

self.outputs.declare(’z’)

def execute(self):

"""Compute the sum of the inputs."""

self.z = self.x + self.y

Note that the only difference with the definition of TaskA is the specification of the base
class and the alias declaration.

The following Python code creates the PluginTaskA object, creates a Workflow object,
initializes the workflow with this task, and then executes the workflow with input values:

A = pyutilib.workflow.TaskFactory(’TaskA’)

w = pyutilib.workflow.Workflow()

w.add(A)

print w(x=1, y=3)

13

This has the same logical steps as the example in Section 2.2. The only difference is that
the task is created by the task factory.

3 Control Flow Tasks

The basic functionality provided by PW can be characterized as a data flow. Each task
represents a transformation of data in input ports to data in output ports. These tasks are
networked together in a data flow graph, in which tasks form a directed acyclic graph where
data flows from the start task(s) to the final task(s).

PW extends this functionality by providing control flow logic. Tasks include special ports,
input and output control ports that can be used to limit the execution of tasks. An output
control port is connected to one or more input control ports. If an output control port is
set to the ready state, then the tasks connected to this with an input control port can be
executed. Otherwise, these tasks are blocked until the output control port changes state.

For example, the Selection Task class is a predefined task whose inputs are a dictionary,
data, and an indexing value, index. This task returns selection, which is simply the value
data[index]. This task can be used to switch the execution based on the indexed value.
For example:

class TaskA(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’x’)

self.inputs.declare(’y’)

self.outputs.declare(’z’)

def execute(self):

"""Compute the sum of the inputs."""

self.z = self.x + self.y

B = pyutilib.workflow.TaskFactory(’workflow.selection’)

A = TaskA()

A.inputs.x = B.outputs.selection

w = pyutilib.workflow.Workflow()

w.add(B)

print w(index=’a’, y=100, data={’a’:1, ’b’:2})

w.reset()

print w(index=’b’, y=100, data={’a’:1, ’b’:2})

This generates the following output:

Options:

z = 101

Options:

14

z = 102

The Switch Task class is a predefined task that provides a similar functionality in this
example. However, rather than switching the data value, this class switches the control flow
for downstream tasks. For example:

class TaskA(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’x’, constant=True)

self.inputs.declare(’y’)

self.outputs.declare(’z’)

def execute(self):

"""Compute the sum of the inputs."""

self.z = self.x + self.y

class TaskZ(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’z’, action=’store_any’)

self.outputs.declare(’z’, self.inputs.z)

def execute(self):

pass

B = pyutilib.workflow.TaskFactory(’workflow.switch’)

A1 = TaskA()

A1.inputs.x = 1

B.add_branch(’a’, A1)

A2 = TaskA()

A2.inputs.x = -2

B.add_branch(’b’, A2)

Z = TaskZ()

Z.inputs.z = A1.outputs.z

Z.inputs.z = A2.outputs.z

w = pyutilib.workflow.Workflow()

w.add(B)

print "Branch a"

print w(value=’a’, y=100)

w.reset()

print "Branch b"

print w(value=’b’, y=100)

This generates the following output:

Branch a

Options:

z = 101

Branch b

15

Options:

z = 98

The Branch Task class provides a simpler version of the same process executed by the
Switch Task class. This class switches the control flow for two downstream tasks. For
example:

Options:

x = -1

Options:

Here, the branches for TaskA and TaskB are specified with a branch value that is a boolean.

4 Defining Task Resources

There are many contexts in which task execution is dependent on the availability of external
resources. For example, data files may need to be available, a database may need to be
unlocked, or a software license may need to be free. PW allows these constraints on workflow
execution to be represented with Resource objects that represent the state of a dependent
resource. A resource may or may not be available, and the workflow can lock and unlock a
resource as it employs it for execution.

PW defines the ExecutableResource, which allows a user to specify an executable that
is automatically found by searching the PATH environment. If the specified executable is not
found, then it is unavailable for execution in a workflow. This resource also includes a utility
method for applying this executable with command-line arguments.

The following example illustrates the use of this resource to define a task that lists all of
the files in a specified directory:

class TaskH(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’dir’)

self.outputs.declare(’list’)

self.add_resource(pyutilib.workflow.ExecutableResource(’ls’))

def execute(self):

self.resource(’ls’).run(self.dir, logfile=currdir+’logfile’)

self.list = []

for line in open(currdir+’logfile’,’r’):

self.list.append(line.strip())

self.list.sort()

H = TaskH()

w = pyutilib.workflow.Workflow()

w.add(H)

print w(dir=currdir+’dummy’)

16

A key role of resource objects is that they can limit the execution of tasks. The
availability method in a resource object is queried to see if a resource can be allocated.
The following example illustrates this functionality with a simple BusyResource class that
is busy the first time it is queried:

from pyutilib.workflow import *

class BusyResource(Resource):

def __init__(self, name=None):

resource.Resource.__init__(self)

self._counter = 1

def available(self):

if self._counter > 0:

print "BUSY",self._counter

self._counter -= 1

return False

return True

class TaskA(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’x’)

self.outputs.declare(’x’, self.inputs.x)

def execute(self):

pass

A = TaskA()

A.add_resource(BusyResource())

w = pyutilib.workflow.Workflow()

w.add(A)

The first time that task A is queried, this resource is not available. Note that the PW
workflow execution process currently does not allow tasks to block indefinitely. If all tasks
have blocked, then the workflow execution will immediately terminate.

5 Predefined Tasks

The following sections describe the task plugins that are defined by PW, and we provide an
example of how a task plugin is defined.

5.1 Selection Task

The workflow.selection task has the following inputs:

• data: a dictionary

17

• index: an index key in the dictionary

This task returns the value of the dictionary with the specified index key.
Note that this task does not fail gracefully if the index key is not defined in the dictionary.

An exception will occur that will terminate the execution of the workflow.

6 The Task Driver

The PW task driver provides a facility for creating a command-line utility that can execute
PW plugin tasks. The task driver is inspired by command-line tools like svn that allow
users to specify subcommands that have independent command-line arguments. The PW
task driver can be easily configured to execute different tasks and workflows as subcommands
within a command-line application.

Consider the following two task classes:

class PluginTaskZ(pyutilib.workflow.TaskPlugin):

pyutilib.component.core.alias(’TaskZ’)

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’x’)

self.inputs.declare(’y’)

self.add_argument(’--x’, dest=’x’, type=int)

self.add_argument(’--y’, dest=’y’, type=int)

self.outputs.declare(’z’)

def execute(self):

"""Compute the sum of the inputs."""

self.z = self.x + self.y

class PluginTaskY(pyutilib.workflow.TaskPlugin):

pyutilib.component.core.alias(’TaskY’)

def __init__(self, *args, **kwds):

"""Constructor."""

pyutilib.workflow.Task.__init__(self, *args, **kwds)

self.inputs.declare(’X’)

self.inputs.declare(’Y’)

self.add_argument(’--X’, dest=’X’, type=int)

self.add_argument(’--Y’, dest=’Y’, type=int)

self.outputs.declare(’Z’)

def execute(self):

"""Compute the sum of the inputs."""

self.Z = self.X * self.Y

18

Note that these are plugin tasks that can be created with the TaskFactory functor. The
PW task driver can only execute tasks and workflows that are defined as plugins.

Suppose that the TaskZ and TasY are defined in the file task yz.py. The following script
creates a task driver, activates two these two tasks and illustrates the results of parsing two
sets of command-line arguments:

import tasks_yz

driver = pyutilib.workflow.TaskDriver()

driver.register_task(’TaskZ’)

driver.register_task(’TaskY’)

print driver.parse_args([’TaskZ’,’--x=3’,’--y=4’])

print driver.parse_args([’TaskY’,’--X=3’,’--Y=4’])

However, the true value of the task driver is in the definition of a command-line utility. For
example, the following script defines a command-line utility that can execute tasks TaskZ

and TaskY:

import pyutilib.workflow

import tasks_yz

driver = pyutilib.workflow.TaskDriver()

driver.register_task(’TaskZ’)

driver.register_task(’TaskY’)

print driver.parse_args()

This script creates the task driver and then parses the sys.argv command-line arguments.
Suppose that this script is in the file driver1.py. Then the following command-line illus-
trates the execution of task TaskZ:

python driver1.py TaskZ --x=3 --y=4

which generates the following output:

Options:

z = 7

The task driver constructor includes several options for declaring the script name and
associated documentation that will be printed when the --help option is specified:

• prog - The name of the script.

• description - A short description of the script’s functionality.

• epilog - Additional documentation that is printed after the command-line options are
described.

The following script uses these options to illustrate the help information that is printed by
the task driver:

import pyutilib.workflow

19

import tasks_yz

driver = pyutilib.workflow.TaskDriver(prog=’myprog’,

description=’This is the description of this task driver’,

epilog="""**********************

This is more text

that describes this command driver. Note

that the format of the epilog string is preserved in the

help

output!

""")

driver.register_task(’TaskZ’)

driver.register_task(’TaskY’)

print driver.parse_args()

Suppose that this script is in the file driver2.py. Then the following command-line illus-
trates the execution with the --help option:

python driver2.py --help

which generates the following output:

usage: myprog [-h] {TaskY,TaskZ} ...

This is the description of this task driver

positional arguments:

{TaskY,TaskZ} Sub-commands

TaskZ

TaskY

optional arguments:

-h, --help show this help message and exit

This is more text

that describes this command driver. Note

that the format of the epilog string is preserved in the

help

output!

Furthermore, the --help option can be used to print information about a specific subcom-
mand. The command

python driver2.py TaskZ --help

generates the following output:

usage: myprog TaskZ [-h] [--x X] [--y Y]

20

optional arguments:

-h, --help show this help message and exit

--x X

--y Y

7 Discussion

A major driver for the development of the PW is the TEVA-SPOT Toolkit [2], which supports
research on sensor placement optimization for water security applications. TEVA-SPOT
uses the PW task driver to define the sptk script, which can execute a variety of different
workflows that represent different strategies for sensor placement optimization.

The fact that PW provides a self-contain facility for defining and executing workflows is
particularly important for TEVA-SPOT. This code is targeted for distribution on desktop
computers, and PW provides a convenient mechanism for flexibly developing new sensor
placement strategies that can be executed without a cumbersome workflow management
system. Parallel execution of PW workflows is a natural extension of the current capability,
which would not require a signficant extension of the current class definitions and workflow
syntax.

Finally, here are some notes concerning the current status of development in PW:

• PW includes a variety of methods managing parsers used to initialize tasks. These
methods were intended to simplify the setup of commands using workflows. However,
these methods have not proven terribly useful in practice. Consequently, we could
imagine deprecating this feature of PW unless clear use cases arise.

• The PW execution logic is simply a method of the Workflow class. It would be worth
exploring how this could be generalized to (a) support threaded parallelism and (b)
interface with third-party grid- or cloud- computing workflow engines. This would
provide a nice extensibility of this capability while preserving the simple Pythonic
interface that PW provides.

• A preliminary resource class for files has been developed, but simple use-cases for this
class have not been flushed out.

• Control flow tasks for looping and other more advanced capabilities are not currently
provided, but these will probably be developed as the need arises.

Acknowledgements

We are grateful to John Siirola for discussing the design of multi-task connectors, which
strongly influenced the design currently employed in pyutilib.workflow. Sandia National
Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned

21

subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

References

[1] P. Bui, L. Yu, and D. Thain, Weaver: Integrating distributed computing abstractions
into scientific workflows using python, in Challenges of Large Applications in Distributed
Environments at ACM HPDC 2010, June 2010.

[2] W. E. Hart, J. Berry, R. Murray, C. A. Phillips, L. A. Riesen, and J.-P.
Watson, SPOT: A sensor placement optimization toolkit for drinking water contaminant
warning system design, Tech. Rep. SAND2007-4393, Sandia National Laboratories, 2007.

[3] W. E. Hart and J. D. Siirola, The pyutilib component architecture, Tech. Rep.
SAND2010-2516, Sandia National Laboratories, May 2010.

[4] Vistrails. http://www.vistrails.org, 2010.

22

