This vignette demonstrates how to access most of data stored in a stanfit object. A stanfit object (an object of class "stanfit"
) contains the output derived from fitting a Stan model using Markov chain Monte Carlo or one of Stan’s variational approximations (meanfield or full-rank). Throughout the document we’ll use the stanfit object obtained from fitting the Eight Schools example model:
library(rstan)
fit <- stan_demo("eight_schools", refresh = 0)
Warning: There were 5 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
Warning: Examine the pairs() plot to diagnose sampling problems
class(fit)
[1] "stanfit"
attr(,"package")
[1] "rstan"
There are several functions that can be used to access the draws from the posterior distribution stored in a stanfit object. These are extract
, as.matrix
, as.data.frame
, and as.array
, each of which returns the draws in a different format.
The extract
function (with its default arguments) returns a list with named components corresponding to the model parameters.
list_of_draws <- extract(fit)
print(names(list_of_draws))
[1] "mu" "tau" "eta" "theta" "lp__"
In this model the parameters mu
and tau
are scalars and theta
is a vector with eight elements. This means that the draws for mu
and tau
will be vectors (with length equal to the number of post-warmup iterations times the number of chains) and the draws for theta
will be a matrix, with each column corresponding to one of the eight components:
head(list_of_draws$mu)
[1] 0.5447095 4.7252417 3.2569470 -0.8286781 9.6219050 8.2216086
head(list_of_draws$tau)
[1] 8.5346787 17.9086457 0.6533242 7.6947293 0.4868406 0.1776437
head(list_of_draws$theta)
iterations [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 6.418424 2.377951 -7.457418 -4.285390 6.260707 4.035662
[2,] 16.200762 20.996226 13.522734 10.804684 -5.715024 1.373639
[3,] 2.730646 2.906606 3.566164 4.272856 3.946449 3.156987
[4,] -9.516586 3.419058 2.609175 2.106274 1.168186 2.333335
[5,] 10.649391 9.347813 8.845197 9.312305 10.572009 8.837870
[6,] 7.779830 8.059589 8.098960 8.071455 8.152695 8.439963
iterations [,7] [,8]
[1,] -10.233530 -0.2492004
[2,] 2.659190 20.2856562
[3,] 2.915854 1.8150799
[4,] 10.873250 -8.2252264
[5,] 9.736105 9.5069306
[6,] 8.829198 8.4036264
The as.matrix
, as.data.frame
, and as.array
functions can also be used to retrieve the posterior draws from a stanfit object:
matrix_of_draws <- as.matrix(fit)
print(colnames(matrix_of_draws))
[1] "mu" "tau" "eta[1]" "eta[2]" "eta[3]" "eta[4]"
[7] "eta[5]" "eta[6]" "eta[7]" "eta[8]" "theta[1]" "theta[2]"
[13] "theta[3]" "theta[4]" "theta[5]" "theta[6]" "theta[7]" "theta[8]"
[19] "lp__"
df_of_draws <- as.data.frame(fit)
print(colnames(df_of_draws))
[1] "mu" "tau" "eta[1]" "eta[2]" "eta[3]" "eta[4]"
[7] "eta[5]" "eta[6]" "eta[7]" "eta[8]" "theta[1]" "theta[2]"
[13] "theta[3]" "theta[4]" "theta[5]" "theta[6]" "theta[7]" "theta[8]"
[19] "lp__"
array_of_draws <- as.array(fit)
print(dimnames(array_of_draws))
$iterations
NULL
$chains
[1] "chain:1" "chain:2" "chain:3" "chain:4"
$parameters
[1] "mu" "tau" "eta[1]" "eta[2]" "eta[3]" "eta[4]"
[7] "eta[5]" "eta[6]" "eta[7]" "eta[8]" "theta[1]" "theta[2]"
[13] "theta[3]" "theta[4]" "theta[5]" "theta[6]" "theta[7]" "theta[8]"
[19] "lp__"
The as.matrix
and as.data.frame
methods essentially return the same thing except in matrix and data frame form, respectively. The as.array
method returns the draws from each chain separately and so has an additional dimension:
print(dim(matrix_of_draws))
print(dim(df_of_draws))
print(dim(array_of_draws))
[1] 4000 19
[1] 4000 19
[1] 1000 4 19
By default all of the functions for retrieving the posterior draws return the draws for all parameters (and generated quantities). The optional argument pars
(a character vector) can be used if only a subset of the parameters is desired, for example:
mu_and_theta1 <- as.matrix(fit, pars = c("mu", "theta[1]"))
head(mu_and_theta1)
parameters
iterations mu theta[1]
[1,] 7.834656 14.658213
[2,] 8.602845 8.707589
[3,] 6.683328 6.059371
[4,] 1.136996 16.144736
[5,] 3.099223 12.282279
[6,] 9.837489 9.743201
Summary statistics are obtained using the summary
function. The object returned is a list with two components:
fit_summary <- summary(fit)
print(names(fit_summary))
[1] "summary" "c_summary"
In fit_summary$summary
all chains are merged whereas fit_summary$c_summary
contains summaries for each chain individually. Typically we want the summary for all chains merged, which is what we’ll focus on here.
The summary is a matrix with rows corresponding to parameters and columns to the various summary quantities. These include the posterior mean, the posterior standard deviation, and various quantiles computed from the draws. The probs
argument can be used to specify which quantiles to compute and pars
can be used to specify a subset of parameters to include in the summary.
For models fit using MCMC, also included in the summary are the Monte Carlo standard error (se_mean
), the effective sample size (n_eff
), and the R-hat statistic (Rhat
).
print(fit_summary$summary)
mean se_mean sd 2.5% 25%
mu 7.863884583 0.13700508 5.2321964 -2.0422915 4.6269794
tau 6.599095132 0.16046573 5.7085456 0.2345065 2.4116847
eta[1] 0.375229911 0.01514060 0.9381203 -1.5313749 -0.2151492
eta[2] 0.004147385 0.01559322 0.8790939 -1.7521281 -0.5766739
eta[3] -0.199061848 0.01522928 0.9134201 -1.9233541 -0.8049536
eta[4] -0.039406372 0.01362912 0.8479632 -1.7511187 -0.6066509
eta[5] -0.370246352 0.01655953 0.8932633 -2.0846894 -0.9660010
eta[6] -0.204209067 0.01498057 0.8799825 -1.9172993 -0.7788366
eta[7] 0.348635042 0.01697559 0.9111550 -1.4979758 -0.2043391
eta[8] 0.062709382 0.01502139 0.9282725 -1.7781836 -0.5482978
theta[1] 11.335275863 0.15664699 8.4281621 -2.2940551 5.8620102
theta[2] 7.883719928 0.10284132 6.3925801 -5.1356249 3.9948330
theta[3] 6.036301960 0.15676490 7.8803570 -12.3008577 1.8278046
theta[4] 7.575273541 0.10199717 6.4364544 -5.3897602 3.6837216
theta[5] 4.886665484 0.10579500 6.4088014 -9.6346894 1.1328775
theta[6] 6.251944264 0.10720494 6.5528113 -7.7144651 2.3897055
theta[7] 10.610438309 0.12460629 6.9284417 -1.4690289 6.0211123
theta[8] 8.514287880 0.14635666 7.9547517 -7.1063146 3.9007457
lp__ -39.537150705 0.07642424 2.6232606 -45.3329098 -41.1098461
50% 75% 97.5% n_eff Rhat
mu 7.77626346 11.0972178 18.581425 1458.461 1.0039599
tau 5.28591218 9.1108242 21.028160 1265.571 1.0041627
eta[1] 0.39427914 0.9970109 2.247871 3839.112 1.0009535
eta[2] 0.01655031 0.5600328 1.726874 3178.329 1.0029754
eta[3] -0.22392990 0.4167847 1.647382 3597.346 1.0011706
eta[4] -0.03390189 0.5365456 1.591477 3870.958 0.9998946
eta[5] -0.39030913 0.2051930 1.449781 2909.800 1.0006403
eta[6] -0.21086457 0.3779280 1.597726 3450.575 1.0007759
eta[7] 0.34287287 0.9354712 2.147667 2880.942 1.0003174
eta[8] 0.06297143 0.6578275 1.961969 3818.832 1.0007991
theta[1] 10.18327621 15.4053555 31.995808 2894.820 1.0005149
theta[2] 7.84386632 11.8243242 20.981496 3863.822 1.0001433
theta[3] 6.63421295 10.8045881 20.371353 2526.935 1.0009286
theta[4] 7.63718913 11.4798972 20.620087 3982.146 1.0001086
theta[5] 5.41247224 9.1606172 16.289103 3669.639 1.0011515
theta[6] 6.65775950 10.4060349 18.794605 3736.162 1.0004816
theta[7] 9.97535487 14.5480351 26.003608 3091.656 1.0004385
theta[8] 8.17189454 12.5817082 25.800651 2954.121 1.0009291
lp__ -39.27056233 -37.6887982 -35.097643 1178.204 1.0064082
If, for example, we wanted the only quantiles included to be 10% and 90%, and for only the parameters included to be mu
and tau
, we would specify that like this:
mu_tau_summary <- summary(fit, pars = c("mu", "tau"), probs = c(0.1, 0.9))$summary
print(mu_tau_summary)
mean se_mean sd 10% 90% n_eff Rhat
mu 7.863885 0.1370051 5.232196 1.6079465 14.39235 1458.461 1.003960
tau 6.599095 0.1604657 5.708546 0.9589362 13.54728 1265.571 1.004163
Since mu_tau_summary
is a matrix we can pull out columns using their names:
mu_tau_80pct <- mu_tau_summary[, c("10%", "90%")]
print(mu_tau_80pct)
10% 90%
mu 1.6079465 14.39235
tau 0.9589362 13.54728
For models fit using MCMC the stanfit object will also contain the values of parameters used for the sampler. The get_sampler_params
function can be used to access this information.
The object returned by get_sampler_params
is a list with one component (a matrix) per chain. Each of the matrices has number of columns corresponding to the number of sampler parameters and the column names provide the parameter names. The optional argument inc_warmup (defaulting to TRUE
) indicates whether to include the warmup period.
sampler_params <- get_sampler_params(fit, inc_warmup = FALSE)
sampler_params_chain1 <- sampler_params[[1]]
colnames(sampler_params_chain1)
[1] "accept_stat__" "stepsize__" "treedepth__" "n_leapfrog__"
[5] "divergent__" "energy__"
To do things like calculate the average value of accept_stat__
for each chain (or the maximum value of treedepth__
for each chain if using the NUTS algorithm, etc.) the sapply
function is useful as it will apply the same function to each component of sampler_params
:
mean_accept_stat_by_chain <- sapply(sampler_params, function(x) mean(x[, "accept_stat__"]))
print(mean_accept_stat_by_chain)
[1] 0.8623579 0.8631091 0.8363789 0.8016998
max_treedepth_by_chain <- sapply(sampler_params, function(x) max(x[, "treedepth__"]))
print(max_treedepth_by_chain)
[1] 5 5 5 6
The Stan program itself is also stored in the stanfit object and can be accessed using get_stancode
:
code <- get_stancode(fit)
The object code
is a single string and is not very intelligible when printed:
print(code)
[1] "data {\n int<lower=0> J; // number of schools \n real y[J]; // estimated treatment effects\n real<lower=0> sigma[J]; // s.e. of effect estimates \n}\nparameters {\n real mu; \n real<lower=0> tau;\n vector[J] eta;\n}\ntransformed parameters {\n vector[J] theta;\n theta = mu + tau * eta;\n}\nmodel {\n target += normal_lpdf(eta | 0, 1);\n target += normal_lpdf(y | theta, sigma);\n}"
attr(,"model_name2")
[1] "schools"
A readable version can be printed using cat
:
cat(code)
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
vector[J] eta;
}
transformed parameters {
vector[J] theta;
theta = mu + tau * eta;
}
model {
target += normal_lpdf(eta | 0, 1);
target += normal_lpdf(y | theta, sigma);
}
The get_inits
function returns initial values as a list with one component per chain. Each component is itself a (named) list containing the initial values for each parameter for the corresponding chain:
inits <- get_inits(fit)
inits_chain1 <- inits[[1]]
print(inits_chain1)
$mu
[1] 1.001
$tau
[1] 0.1748375
$eta
[1] -0.96097895 -0.48769618 0.53046695 0.90459315 -0.04889237 1.22326686
[7] -0.88752200 1.48297866
$theta
[1] 0.8329847 0.9157323 1.0937454 1.1591567 0.9924517 1.2148728 0.8458278
[8] 1.2602802
The get_seed
function returns the (P)RNG seed as an integer:
print(get_seed(fit))
[1] 699847790
The get_elapsed_time
function returns a matrix with the warmup and sampling times for each chain:
print(get_elapsed_time(fit))
warmup sample
chain:1 0.038175 0.029291
chain:2 0.037047 0.033903
chain:3 0.033255 0.032134
chain:4 0.030956 0.026188