
Synthesis ToolKit in C++ Version 1.0 May, 1996
SIGGRAPH 1996

Perry R. Cook
Department of Computer Science,

Department of Music, Princeton University
prc@cs.princeton.edu

Abstract

This paper describes a collection of roughly 60 (as of May, 1996) classes in C++,
designed for the rapid creation and connection of music synthesis and audio processing
systems. Primary attention has been paid to cross-platform functionalit y, ease of use,
instructional code examples, and real-time control. The types of objects can be divided
into three categories: 1) basic audio sample sources and manipulators called unit
generators, 2) musical instrument and audio signal processing algorithms built from unit
generators, and 3) control signal and user interface handlers. Instrument synthesis
algorithms include additi ve (Fourier) synthesis, subtractive synthesis, frequency
modulation synthesis of various topologies, modal (resonant filter) synthesis, and a
variety of physical models including stringed and wind instruments.

1 The C++ Synthesis Toolkit: Motivations

The Synthesis Toolkit in C++ includes many
new algorithms and instruments, but it is also a
port of most of the algorithms and musical
instrument models I have generated over the last
decade. These models ran in diverse environments
and languages, such as SmallTalk, Lisp, real-time
synthesis in Motorola DSP56001 assembler (and
connected using the NeXT MusicKit), Objective C,
and ANSI C code. The primary motivations for
creating the Synthesis Toolkit were a desire for
portabili ty, object oriented design and extensibili ty,
and exploiting the increasing eff iciency and power
of modern host processors, combined with
performance improvements of optimizing C
compilers. There was also a desire to establish a
better framework for implementing many of the
“ intelli gent player” objects as discussed in [Garton
1992][Jànosy 1994][Cook 1995]. Finally, for
future research, teaching, and music composition
and performance, there was a desire to create a set
of examples of different synthesis techniques which
wherever possible share a common interface, but
allow unique features of each particular synthesis
algorithm to be exploited. Sharing a common
interface allows for rapid comparisons of the
algorithms, and also allows for synthesis to be

accomplished in a scaleable fashion, by selecting
the algorithm that accomplishes a desired task in
the most efficient and/or expressive manner.

The Synthesis Toolkit in C++ is made
available freely for academic and research uses via
various ftp servers, including Princeton Computer
Science, the Princeton Sound Kitchen, and the
Stanford Center for Computer Research in Music
and Acoustics (CCRMA).

2 Unit Generators

The master class for the entire Synthesis Toolkit is
Object.cpp. Little actual work is done in
Object.cpp, but all other classes inherit from it. It
is thus a convenient place to centralize machine-
specific #defines, switches, and some global
variables. For example, by defining SGI, NEXT,
INTEL, and/or SGI_REALTIME the class
RawWvOut.cpp compiles and links appropriately
to generate .snd files, .wav files, or stream in real-
time to the audio output DACs. Other features and
functionali ty, specifically real-time audio input and
output on other platforms, are planned for support
in the future.

Audio samples throughout the sytem are
floating point (double or float defined as
MY_FLOAT for the entire toolkit in the Object.h

file), and thus could use any normalization scheme
desired. The base instruments and algorithms are
implemented with a general dynamic maximim of
approximately +/-1.0, and the RawWvOut.cpp
class scales appropriately for DAC or sound file
output.

All audio sample based unit generators
implement a fundamental tick() method, which
causes the unit generator to do computation. Some
unit generators are only sample sources, like the
linearly-interpolating oscill ator RawLoop.cpp, the
simple envelope generator Envelope.cpp, or the
RawWvIn.cpp object which allows for sound input
streaming. These source-only objects take no
argument in their tick() function, and return a
MY_FLOAT. Other consumer-only objects like
the RawWvOut object take a MY_FLOAT
argument and return void. Objects like fil ters,
delay lines, etc. both take and yield a MY_FLOAT
sample in their tick() function. All objects which
are sources of audio samples implement a method
lastOut(), which returns the last computed sample.
This allows a single source to feed multiple sample
consuming objects without neccessitating an
interim storage variable. Further, since each object
saves its output state in an internally protected
variable, bugs arising from accidentally using a
shared non-protected “patchpoint” are avoided.
Further, it simpli fies the process of vectorization as
discussed later in this document.

As a simple example, an algorithm will be
constructed which reads an input stream from a
file, fil ters it, multiplies it by a time-varying
envelope, and writes it out as a file. Here just the
constructor (function which creates and initializes
unit generators and object variables), and the tick()
function are shown. For a good beginning
reference on C++, consult [Winston 1994].

ExampleClass() {
envelope = new Envelope;
waveIn = new RawWvIn(“infile.raw”);
filter = new OnePole;
output = new RawWvOut(“outfile.snd”);

}

MY_FLOAT ExampleClass :: tick(void) {
output->tick(envelope->tick()

*filter->tick(waveIn->tick()));
}

The base Synthesis Toolkit 1.0 unit generators
implement a single-sample tick, that is, tick()
functions take and/or yield a single sample value.
This allows for minimum memory useage, the
abili ty to modularly build very short (one sample)
recursive loops, and guaranteed minimum latency
through the system. Single sample unit generator
calculation, however, is nearly guaranteed to be
sub-optimal in terms of computation speed. To
address the eff iciency issue, the unit generators
have been designed to allow for easy vectorization.
Vectorized unit generators take and/or yield
pointers to arrays of sample values, and improve
performance significantly depending on the
processor type and vector size. A set of vectorized
ToolKit unit generators is planned to be supported
as version 1.1v. The vector size will be determined
by a #define in the Object.h file, and can be
adjusted for tradeoffs of performance, memory
useage, and latency requirements.

3 Music Synthesis Algorithms

Algorithms supported in the Synthesis Toolkit
include simple oscill ator-based additive synthesis,
subtractive synthesis, Frequency Modulation non-
linear synthesis, modal synthesis, PCM sampling
synthesis, and physical modeling. Consult
[Mathews and Pierce 1989][Roads 1996] and
[Stiegli tz 1996] for more information on digital
audio processing and music synthesis. Additive
analysis/ synthesis, also called Fourier synthesis, is
covered in [McAulay and Quatieri 1986][Smith
and Serra 1987], and elsewhere in these
proceedings by [Serra 1996]. In subtractive
synthesis, a complex sound is fil tered to shape the
spectrum into a desired pattern. The most popular
forms of subtractive synthesis in computer music
involve the phase and channel VoCoder (voice
coder)[Dudley 1939][Moorer 1978][Dolson 1986],
and Linear Predictive Coding (LPC) [Atal 1970]
[Makhoul 1975] [Moorer 1979][Steigli tz and
Lansky 1981], Frequency Modulation synthesis
[Chowning 1973 and 1981] and WaveShaping
[LeBrun 1979] employ non-linear warping of basic
functions (like sine waves) to create a complex
spectrum. Modal synthesis models individual
physical resonances of an instrument using

resonant fil ters, excited by parametric or analyzed
excitations [Adrien 1988][Wawrzynek 1989]
[Larouche 1994]. Physical models endeavor to
solve the physics of instruments in the time-
domain, typically by numerical solution of the
differential traveling wave equation, to synthesize
sound [Smith 1987][Karjalainen et. al. 1991][Cook
1991 and 1992][McIntyre et. al. 1983][CMJ 1992-
3].

Given the author’s legacy in synthesis of the
singing voice, the Synthesis Toolkit Version 1.0
provides multiple models of the voice, and more
vocal synthesis models are planned for the future.
References on voice synthesis using subtractive,
FM, and physical modeling include [Kelly and
Lochbaum 1962] [Rabiner 1968] [Klatt 1980]
[Chowning 1981] [Carlson et. al 1990] [Cook et. al
1991b, 1992b, 1993][Maher 1995].

4 Audio Effects Algorithms

The Synthesis Toolkit includes a few simple delay-
based effects such as reverberation (modeling of
sound reflections in rooms), chorus effect
(simulating the effect of multiple sound sources
from a single sound), and flanging (time-varying
delay mixed with direct sound). See [Moorer
1979b] and the book by [Roads 96] for more
details on reverberation and effects processing.

5 SKINI: Yet Another “Better” MIDI ?

To support a unified control interface across
multiple platforms, multiple control signal sources
such as GUIs of multiple flavors, MIDI controllers
and score files, and to support connection between
processes on a single machine and across networks,
a simple extension to MIDI was created and
imbedded into the Synthesis Toolkit. Other more
sophisticated protocols for music control have been
proposed and implemented [CMJ 1994], but the
Toolkit introduces and uses a simple but extensible
protocol called SKINI. SKINI (Synthesis toolKit
Instrument Network Interface) extends MIDI in
incremental ways, specifically in representation
accuracy by allowing for floating point note
numbers (microtuning), floating point control
values, and double precision time stamps and delta-

time values. Further, an easily tokenizable text
basis for the control stream is used, to allow for
easy creation of SKINI files and debugging of
SKINI control consumers and providers. Finally,
SKINI goes beyond MIDI in that it allows for
parametric control curves to be specified and used.
This allows continuous control streams to be
potentially lower in bandwidth than MIDI (hence
part of the name SKINI), yet higher in resolution
and quali ty because the control functions are
“ rendered” in the instrument and/or in a performer-
expert class which controls the instrument.
Expressive figures like trill s, drum rolls,
characteristic pitch bends, heavy-metal guitar
hammer-ons, etc. can all be specified and called up
using text symbols. To support SKINI scorefiles,
the Toolkit provides MIDIText.cpp, which reads
SKINI files and controls instrument synthesis and
effects. MIDIInpt.cpp is a real-time MIDI input
handler. testMIDI.cpp imbeds a MIDIInpt.cpp
object and converts the MIDI stream to SKINI for
realtime control. Read the Toolkit documentation
file SKINI.txt for information on the SKINI format
and new features as they develop.

6 GUIs and JAVA

In keeping with cross-platform support and
compatibili ty, simple Graphical User Intefaces for
Synthesis Toolkit instruments have been
implemented in Tcl/TK [Welch 1995]. All classes
in the Synthesis Toolkit have been ported to JAVA
[Flanagan 1996], but the execution speed as of this
writing is too slow to be useful. Interfaces which
function like the Tcl/TK controllers have also been
constructed in JAVA . When JAVA compilers or
faster JAVA interpreters become available, and
when base audio support at useful musical
sampling rates is provided in JAVA , the JAVA
Synthesis Toolkit will be made available via ftp.

Acknowledgements

Many ideas for the Synthesis Toolkit and the
algorithms came from people at CCRMA,
specifically Julius Smith, John Chowning, and Max
Mathews. Dexter Morrill and Chris Chafe have
been instrumental in forming some of my opinions

on controllers and protocols for real-time synthesis.
The NeXT MusicKit and ZIPI have also been
highly inspirational and instructive. Ted Huffmire
at Princeton University ported the ToolKit to
JAVA , and suffered through the experiment of
determining that vectorization does li ttle to improve
efficiency in current JAVA interpreters.

References

Adrien, J. 1988. Etude de Structures Complexes
Vibrantes, Application-la Synthèse par Modeles
Physiques, Doctoral Dissertation. Paris: Université
Paris VI.

Atal, B. 1970. "Speech Analysis and Synthesis by
Linear Prediction of the Speech Wave." Journal of
the Acoustical Society of America 47.65(A).

Carlson, G. and L. Neovius 1990. "Implementations of
Synthesis Models for Speech and Singing," STL-
Quarterly Progress and Status Report, KTH,
Stockholm, Sweden, 2-3: pp. 63-67.

Chowning, J. 1973, “The Synthesis of Complex Audio
Spectra by Means of Frequency Modulation,”
Journal of the Audio Engineering Society 21(7):
pp. 526-534.

Chowning, J. 1981, "Computer Synthesis of the
Singing Voice," in Research Aspects on Singing,
KTH, Stockholm, Sweden, pp. 4-13.

CMJ 1992-3. Computer Music Journal Special Issues
on Physical Modeling, 16(4) and 17(1).

CMJ 1994. Computer Music Journal Special Issue on
ZIPI, 18(4).

Cook, P. 1991. “TBone: An Interactive Waveguide
Brass Instrument Synthesis Workbench for the
NeXT Machine,” Proc. International Computer
Music Conference, Montreal, pp. 297-299.

Cook, P. 1991b. “LECTOR: An Ecclesiastical Latin
Control Language for the SPASM/singer
Instrument,” Proc. International Computer Music
Conference, Montreal, pp. 319-321.

Cook, P. 1992. “A Meta-Wind-Instrument Physical
Model, and a Meta-Controller for Real-Time
Performance Control,” Proc. International
Computer Music Conference, San Jose, pp. 273-
276.

Cook, P. 1992b. "SPASM: a Real-Time Vocal Tract
Physical Model Editor/Controller and Singer: the
Companion Software Synthesis System," Colloque
les Modeles Physiques Dans L'Analyse, la
Production et la Creation Sonore, ACROE,
Grenoble, 1990, published in Computer Music
Journal, 17: 1, pp 30-44.

Cook, P., D. Kamarotos, T. Diamantopoulos, and G.
Phili ppis, 1993. "IGDIS: A Modern Greek Text to
Speech/Singing Program for the SPASM/Singer
Instrument," Proceedings of the International
Computer Music Conference, Tokyo, pp. 387-389.

Cook, P. 1995. “A Hierarchical System for Controlli ng
Synthesis by Physical Modeling,” Proc.
International Computer Music Conference, Banff,
pp. 108-109.

Dolson, M. 1986, "The Phase Vocoder: A Tutorial,"
Computer Music Journal, 10 (4), pp. 14 -27.

Dudley, H. 1939, "The Vocoder," Bell Laboratories
Record, December.

Flanagan, D. 1996. Java in a Nutshell , Sebastopol,
CA, O’Reilly and Associates.

Garton, B. 1992. “Virtual Performance Modeling,”
Proc. International Computer Music Conference,
Montreal, pp. 219-222.

Jànosy, Z., Karjalainen, M. & V. Välimäki 1994,
“Intelli gent Synthesis Control with Applications
to a Physical Model of the Acoustic Guitar,” Proc.
International Computer Music Conference,
Aarhus, pp. 402-406.

Karjalainen, M. Laine, U., Laakso, T. and V.
Välimäki, 1991. “Transmission Line Modeling
and Real-Time Synthesis of String and Wind
Instruments,” Proc. International Computer Music
Conference, Montreal, pp. 293-296.

Kelly, J., and C. Lochbaum. 1962. "Speech Synthesis."
Proc . Fourth Intern. Congr. Acoust. Paper G42:
pp. 1-4.

Klatt, D. 1980. “Software for a Cascade/Parallel
Formant Synthesizer,” Journal of the Acoustical
Society of America 67(3), pp. 971-995.

Larouche, J. & J. Meilli er 1994. “Multi channel
Excitation/ Filter Modeling of Percussive Sounds
with Application to the Piano,” IEEE Trans.
Speech and Audio, pp. 329-344.

LeBrun, M. 1979. “Digital Waveshaping Synthesis,”
Journal of the Audio Engineering Society, “27(4):
250-266.

Maher, R. 1995, “Tunable Bandpass Filters in Music
Synthesis,” Audio Engineering Society
Conference. Paper Number 4098(L2).

Makhoul, J. 1975. "Linear Prediction: A Tutorial
Review," Proc. of the IEEE, v 63., pp. 561-580.

Mathews, M. and J. Pierce. 1989. Some Current
Directions in Computer Music Research.
Cambridge MA.: MIT Press: 57-63.

McIntyre, M., Schumacher, R. and J. Woodhouse
1983, “On the Oscill ations of Musical
Instruments,” Journal of the Acoustical Society of
America, 74(5), pp. 1325-1345.

McAulay, R. and T. Quatieri. 1986. "Speech
Analysis/Synthesis Based on a Sinusoidal
Representation." IEEE Trans. Acoust. Speech and
Sig. Proc. ASSP-34(4): pp. 744-754.

Moorer, A. 1978. "The Use of the Phase Vocoder in
Computer Music Applications." Journal of the
Audio Engineering Society, 26 (1/2), pp. 42-45.

Moorer, A. 1979, “The Use of Linear Prediction of
Speech in Computer Music Applications,” Journal
of the Audio Engineering Society 27(3):134-140.

Moorer, A. 1979b, “About This Reverberation
Business,” Computer Music Journal, 3(2), pp. 13-
28.

Rabiner, L. 1968. “Digital Formant Synthesizer”
Journal of the Acoustical Society of America
43(4), pp. 822-828.

Roads, C. 1976, the computer music tutorial,
Cambridge, MIT Press.

Serra, X. 1996, Papers, Notes, and References
Elsewhere in These Proceedings.

Smith, J. 1987. Musical Applications of Digital

 Waveguides. Stanford University Center For
Computer Research in Music and Acoustics.
Report STAN-M-39.

Smith, J. and Serra, X. 1987. "PARSHL:
Analysis/Synthesis Program for Non-Harmonic
Sounds Based on a Sinusoidal Representation."
Proc. International Computer Music Conference,
Urbana, pp. 290 - 297.

Steiglit z, K. and P. Lansky 1981. “Synthesis of
Timbral Families by Warped Linear Prediction.”
Computer Music Journal 5(3): 45-49.

Steiglit z, K. 1996 Digital Signal Processing Primer,
New York, Addison Wesley.

Wawrzynek, J. 1989. “VLSI Models for Sound
Synthesis,” in Current Directions in Computer
Music Research, M. Mathews and J. Pierce Eds.,
Cambridge, MIT Press.

Welch, B. 1995. Practical Programming in Tcl and Tk,
Saddle River, NJ, Prentice-Hall.

Winston, P. 1994, On to C++ , New York, Addison-
Wesley.

Appendix 1: Unit Generators

Master Object: Object.cpp Compatibility with Objective C, and shared global functionality
Source&Sink: RawWave.cpp Lin-Interp Wavetable, Looped or 1 Shot

NIWave1S.cpp Non-Interp Wavetable, 1 Shot
RawLoop.cpp Lin-Interp Wavetable, Looping
RawWvIn.cpp Lin-Interp Wave In streaming 'device'
NIFileIn.cpp Non-Interp Wave In streamer, closes & opens
RawWvOut.cpp Non-Interp Wave Out streaming 'device'
Envelope.cpp Linearly Goes to Target by Rate, plus noteOn/Off
ADSR.cpp ADSR Flavor of Envelope
Noise.cpp Random Number Generator
SubNoise.cpp Random Numbers each N samples

Filters: Filter.cpp Filter Master Class
OneZero.cpp One Zero Filter
OnePole.cpp One Pole Filter
AllPass1.cpp 1st Order All-Pass (phase) Filter
DCBlock.cpp DC Blocking 1Pole/1Zero Filter
TwoZero.cpp Two Zero Filter
TwoPole.cpp Two Pole Filter
BiQuad.cpp 2Pole/2Zero Filter
FormSwep.cpp Sweepable 2Pole filter, go to Target by Rate
DLineL.cpp Linearly Interpolating Delay Line
DLineA.cpp AllPass Interpolating Delay Line
DLineN.cpp Non Interpolating Delay Line

NonLinear: JetTabl.cpp Cubic Jet NonLinearity
 BowTabl.cpp x^(-3) Bow NonLinearity
 ReedTabl.cpp 1 Break Point Saturating Linear Reed NonLinearity
 LipFilt.cpp Pressure Controlled BiQuad with NonLinearity
Derived: Modulatr.cpp Per. and Rnd. Vibrato: RawWave,SubNoise,OnePole

SingWave.cpp Looping Wavetable with: Modulatr,Envelope

Appendix 2: Algorithms and Instruments

Each Class will be listed either with all UGs it uses, or the <<Algorithm>> of which
it is a flavor. All inherit from Instrmnt, which inherits from Object.

Plucked.cpp Basic Plucked String DLineA,OneZero,OnePole,Noise
Plucked2.cpp Not so Basic Pluck DLineL,DlineA,OneZero
Mandolin.cpp Commuted Mandolin <<flavor of PLUCKED2>>
Bowed.cpp So So Bowed String DlineL,BowTabl,OnePole,BiQuad,RawWave,ADSR
Brass.cpp Not So Bad Brass Inst. DLineA,LipFilt,DCBlock,ADSR,BiQuad
Clarinet.cpp Pretty Good Clarinet DLineL,ReedTabl,OneZero,Envelope,Noise.h
Flute.cpp Pretty Good Flute JetTabl,DLineL,OnePole,DCBlock,Noise,ADSR,RawWave
Modal4.cpp 4 Resonances Envelope,RawWave,BiQuad,OnePole
Marimba.cpp <<flavor of MODAL4>>
Vibraphn.cpp <<flavor of MODAL4>>
Agogobel.cpp <<flavor of MODAL4>>
FM4Op.cpp 4 Operator FM Master ADSR,RawLoop,TwoZero
FM4Alg3.cpp 3 Cascade w/ FB Mod. <<flavor of FM4OP>>
FM4Alg4.cpp Like Alg3 but diff. <<flavor of FM4OP>>
FM4Alg5.cpp 2 Parallel Simple FMs <<flavor of FM4OP>>
FM4Alg6.cpp 3 Carriers share 1 Mod.<<flavor of FM4OP>>
FM4Alg8.cpp 4 Osc. Additive <<flavor of FM4OP>>
HeavyMtl.cpp Distorted FM Synth <<flavor of FM4Alg3>>
PercFlut.cpp Perc. Flute <<flavor of FM4Alg4>>
Rhodey.cpp Rhodes-Like Elec. Piano <<flavor of FM4Alg5>>
Wurley.cpp Wurlitz. Elec. Piano <<flavor of FM4Alg5>>
TubeBell.cpp Classic FM Bell <<flavor of FM4Alg5>>
FMVoices.cpp 3 Formant FM Voice <<flavor of FM4Alg6>>
BeeThree.cpp Cheezy Additive Organ <<flavor of FM4Alg8>>
Sampler.cpp Sampling Synth. 4 each ADSR, RawWave (att), RawWave (loop), OnePole
SamplFlt.cpp Sampler with Swept Filt.<<flavor of Sampler>>
Moog1.cpp Swept filter flavor of <<flavor of SamplFlt>>
Voicform.cpp Source/Filter Voice Envelope,Noise,SingWave,FormSwep,OnePole,OneZero
DrumSynt.cpp Drum Synthesizer bunch of NIFileIn, and OnePole

Reverb.cpp Reverberator Effects Processor Four DLineN, Used as 2 Allpass and 2 Comb Filters.
Flanger.cpp Flanger Effects Processor One DLineL, One RawLoop
Chorus.cpp Chorus Effects Processor Two DLineL, Two RawLoop

