This document describes Celery 2.4. For development docs,
go here.
celery.concurrency.processes.pool
-
class celery.concurrency.processes.pool.ApplyResult(cache, callback, accept_callback=None, timeout_callback=None, error_callback=None, soft_timeout=None, timeout=None)
-
accepted()
-
get(timeout=None)
-
ready()
-
successful()
-
wait(timeout=None)
-
worker_pids()
-
celery.concurrency.processes.pool.DynamicPool
alias of Pool
-
class celery.concurrency.processes.pool.IMapIterator(cache)
-
next(timeout=None)
-
class celery.concurrency.processes.pool.IMapUnorderedIterator(cache)
-
class celery.concurrency.processes.pool.LaxBoundedSemaphore(value=1, verbose=None)
Semaphore that checks that # release is <= # acquires,
but ignores if # releases >= value.
-
clear()
-
release()
-
class celery.concurrency.processes.pool.MapResult(cache, chunksize, length, callback)
-
accepted()
-
worker_pids()
-
exception celery.concurrency.processes.pool.MaybeEncodingError(exc, value)
Wraps unpickleable object.
-
class celery.concurrency.processes.pool.Pool(processes=None, initializer=None, initargs=(), maxtasksperchild=None, timeout=None, soft_timeout=None)
Class which supports an async version of the apply() builtin
-
class Process(group=None, target=None, name=None, args=(), kwargs={})
Process objects represent activity that is run in a separate process
The class is analagous to threading.Thread
-
authkey
-
daemon
Return whether process is a daemon
-
exitcode
Return exit code of process or None if it has yet to stop
-
ident
Return identifier (PID) of process or None if it has yet to start
-
is_alive()
Return whether process is alive
-
join(timeout=None)
Wait until child process terminates
-
name
-
pid
Return identifier (PID) of process or None if it has yet to start
-
run()
Method to be run in sub-process; can be overridden in sub-class
-
start()
Start child process
-
terminate()
Terminate process; sends SIGTERM signal or uses TerminateProcess()
-
class Pool.ResultHandler(outqueue, get, cache, poll, join_exited_workers, putlock)
-
body()
-
exception Pool.SoftTimeLimitExceeded
The soft time limit has been exceeded. This exception is raised
to give the task a chance to clean up.
-
class Pool.Supervisor(pool)
-
body()
-
class Pool.TaskHandler(taskqueue, put, outqueue, pool)
-
body()
-
class Pool.TimeoutHandler(processes, cache, t_soft, t_hard)
-
body()
-
Pool.apply(func, args=(), kwds={})
Equivalent of apply() builtin
-
Pool.apply_async(func, args=(), kwds={}, callback=None, accept_callback=None, timeout_callback=None, waitforslot=False, error_callback=None, soft_timeout=None, timeout=None)
Asynchronous equivalent of apply() builtin.
Callback is called when the functions return value is ready.
The accept callback is called when the job is accepted to be executed.
Simplified the flow is like this:
>>> if accept_callback:
... accept_callback()
>>> retval = func(*args, **kwds)
>>> if callback:
... callback(retval)
-
Pool.close()
-
Pool.grow(n=1)
-
Pool.imap(func, iterable, chunksize=1)
Equivalent of itertools.imap() – can be MUCH slower
than Pool.map()
-
Pool.imap_unordered(func, iterable, chunksize=1)
Like imap() method but ordering of results is arbitrary
-
Pool.join()
-
Pool.map(func, iterable, chunksize=None)
Equivalent of map() builtin
-
Pool.map_async(func, iterable, chunksize=None, callback=None)
Asynchronous equivalent of map() builtin
-
Pool.shrink(n=1)
-
Pool.terminate()
-
class celery.concurrency.processes.pool.PoolThread(*args, **kwargs)
-
close()
-
run()
-
terminate()
-
class celery.concurrency.processes.pool.ResultHandler(outqueue, get, cache, poll, join_exited_workers, putlock)
-
body()
-
class celery.concurrency.processes.pool.Supervisor(pool)
-
body()
-
class celery.concurrency.processes.pool.TaskHandler(taskqueue, put, outqueue, pool)
-
body()
-
class celery.concurrency.processes.pool.ThreadPool(processes=None, initializer=None, initargs=())
-
class DummyProcess(group=None, target=None, name=None, args=(), kwargs={})
-
exitcode
-
start()
-
ThreadPool.Process
alias of DummyProcess
-
class celery.concurrency.processes.pool.TimeoutHandler(processes, cache, t_soft, t_hard)
-
body()
-
exception celery.concurrency.processes.pool.WorkersJoined
All workers have terminated.
-
celery.concurrency.processes.pool.error(msg, *args, **kwargs)
-
celery.concurrency.processes.pool.mapstar(args)
-
celery.concurrency.processes.pool.soft_timeout_sighandler(signum, frame)
-
celery.concurrency.processes.pool.worker(inqueue, outqueue, initializer=None, initargs=(), maxtasks=None)