{-# OPTIONS_GHC -w #-}
{-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-}
#if __GLASGOW_HASKELL__ >= 710
{-# OPTIONS_GHC -XPartialTypeSignatures #-}
#endif
{-# LANGUAGE Trustworthy #-}

module Config.NumberParser where

import Data.List (foldl')
import Config.Number
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)

-- parser produced by Happy Version 1.19.12

newtype HappyAbsSyn t5 t12 = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
newtype HappyWrap4 = HappyWrap4 (Number)
happyIn4 :: (Number) -> (HappyAbsSyn t5 t12)
happyIn4 :: Number -> HappyAbsSyn t5 t12
happyIn4 x :: Number
x = HappyWrap4 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# (Number -> HappyWrap4
HappyWrap4 Number
x)
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn t5 t12) -> HappyWrap4
happyOut4 :: HappyAbsSyn t5 t12 -> HappyWrap4
happyOut4 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap4
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut4 #-}
happyIn5 :: t5 -> (HappyAbsSyn t5 t12)
happyIn5 :: t5 -> HappyAbsSyn t5 t12
happyIn5 x :: t5
x = t5 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# t5
x
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn t5 t12) -> t5
happyOut5 :: HappyAbsSyn t5 t12 -> t5
happyOut5 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> t5
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut5 #-}
newtype HappyWrap6 = HappyWrap6 (Integer)
happyIn6 :: (Integer) -> (HappyAbsSyn t5 t12)
happyIn6 :: Integer -> HappyAbsSyn t5 t12
happyIn6 x :: Integer
x = HappyWrap6 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# (Integer -> HappyWrap6
HappyWrap6 Integer
x)
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn t5 t12) -> HappyWrap6
happyOut6 :: HappyAbsSyn t5 t12 -> HappyWrap6
happyOut6 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap6
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut6 #-}
newtype HappyWrap7 = HappyWrap7 ([Int])
happyIn7 :: ([Int]) -> (HappyAbsSyn t5 t12)
happyIn7 :: [Int] -> HappyAbsSyn t5 t12
happyIn7 x :: [Int]
x = HappyWrap7 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# ([Int] -> HappyWrap7
HappyWrap7 [Int]
x)
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn t5 t12) -> HappyWrap7
happyOut7 :: HappyAbsSyn t5 t12 -> HappyWrap7
happyOut7 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap7
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut7 #-}
newtype HappyWrap8 = HappyWrap8 ([Int])
happyIn8 :: ([Int]) -> (HappyAbsSyn t5 t12)
happyIn8 :: [Int] -> HappyAbsSyn t5 t12
happyIn8 x :: [Int]
x = HappyWrap8 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# ([Int] -> HappyWrap8
HappyWrap8 [Int]
x)
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn t5 t12) -> HappyWrap8
happyOut8 :: HappyAbsSyn t5 t12 -> HappyWrap8
happyOut8 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap8
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut8 #-}
newtype HappyWrap9 = HappyWrap9 ([Int])
happyIn9 :: ([Int]) -> (HappyAbsSyn t5 t12)
happyIn9 :: [Int] -> HappyAbsSyn t5 t12
happyIn9 x :: [Int]
x = HappyWrap9 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# ([Int] -> HappyWrap9
HappyWrap9 [Int]
x)
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn t5 t12) -> HappyWrap9
happyOut9 :: HappyAbsSyn t5 t12 -> HappyWrap9
happyOut9 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap9
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut9 #-}
newtype HappyWrap10 = HappyWrap10 ([Int])
happyIn10 :: ([Int]) -> (HappyAbsSyn t5 t12)
happyIn10 :: [Int] -> HappyAbsSyn t5 t12
happyIn10 x :: [Int]
x = HappyWrap10 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# ([Int] -> HappyWrap10
HappyWrap10 [Int]
x)
{-# INLINE happyIn10 #-}
happyOut10 :: (HappyAbsSyn t5 t12) -> HappyWrap10
happyOut10 :: HappyAbsSyn t5 t12 -> HappyWrap10
happyOut10 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap10
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut10 #-}
newtype HappyWrap11 = HappyWrap11 (Int)
happyIn11 :: (Int) -> (HappyAbsSyn t5 t12)
happyIn11 :: Int -> HappyAbsSyn t5 t12
happyIn11 x :: Int
x = HappyWrap11 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# (Int -> HappyWrap11
HappyWrap11 Int
x)
{-# INLINE happyIn11 #-}
happyOut11 :: (HappyAbsSyn t5 t12) -> HappyWrap11
happyOut11 :: HappyAbsSyn t5 t12 -> HappyWrap11
happyOut11 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap11
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut11 #-}
happyIn12 :: t12 -> (HappyAbsSyn t5 t12)
happyIn12 :: t12 -> HappyAbsSyn t5 t12
happyIn12 x :: t12
x = t12 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# t12
x
{-# INLINE happyIn12 #-}
happyOut12 :: (HappyAbsSyn t5 t12) -> t12
happyOut12 :: HappyAbsSyn t5 t12 -> t12
happyOut12 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> t12
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut12 #-}
newtype HappyWrap13 = HappyWrap13 (Int)
happyIn13 :: (Int) -> (HappyAbsSyn t5 t12)
happyIn13 :: Int -> HappyAbsSyn t5 t12
happyIn13 x :: Int
x = HappyWrap13 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# (Int -> HappyWrap13
HappyWrap13 Int
x)
{-# INLINE happyIn13 #-}
happyOut13 :: (HappyAbsSyn t5 t12) -> HappyWrap13
happyOut13 :: HappyAbsSyn t5 t12 -> HappyWrap13
happyOut13 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap13
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut13 #-}
newtype HappyWrap14 = HappyWrap14 (Int)
happyIn14 :: (Int) -> (HappyAbsSyn t5 t12)
happyIn14 :: Int -> HappyAbsSyn t5 t12
happyIn14 x :: Int
x = HappyWrap14 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# (Int -> HappyWrap14
HappyWrap14 Int
x)
{-# INLINE happyIn14 #-}
happyOut14 :: (HappyAbsSyn t5 t12) -> HappyWrap14
happyOut14 :: HappyAbsSyn t5 t12 -> HappyWrap14
happyOut14 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap14
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut14 #-}
newtype HappyWrap15 = HappyWrap15 (Integer)
happyIn15 :: (Integer) -> (HappyAbsSyn t5 t12)
happyIn15 :: Integer -> HappyAbsSyn t5 t12
happyIn15 x :: Integer
x = HappyWrap15 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# (Integer -> HappyWrap15
HappyWrap15 Integer
x)
{-# INLINE happyIn15 #-}
happyOut15 :: (HappyAbsSyn t5 t12) -> HappyWrap15
happyOut15 :: HappyAbsSyn t5 t12 -> HappyWrap15
happyOut15 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap15
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut15 #-}
newtype HappyWrap16 = HappyWrap16 (Integer)
happyIn16 :: (Integer) -> (HappyAbsSyn t5 t12)
happyIn16 :: Integer -> HappyAbsSyn t5 t12
happyIn16 x :: Integer
x = HappyWrap16 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# (Integer -> HappyWrap16
HappyWrap16 Integer
x)
{-# INLINE happyIn16 #-}
happyOut16 :: (HappyAbsSyn t5 t12) -> HappyWrap16
happyOut16 :: HappyAbsSyn t5 t12 -> HappyWrap16
happyOut16 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap16
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut16 #-}
newtype HappyWrap17 = HappyWrap17 ([Int])
happyIn17 :: ([Int]) -> (HappyAbsSyn t5 t12)
happyIn17 :: [Int] -> HappyAbsSyn t5 t12
happyIn17 x :: [Int]
x = HappyWrap17 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# ([Int] -> HappyWrap17
HappyWrap17 [Int]
x)
{-# INLINE happyIn17 #-}
happyOut17 :: (HappyAbsSyn t5 t12) -> HappyWrap17
happyOut17 :: HappyAbsSyn t5 t12 -> HappyWrap17
happyOut17 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap17
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut17 #-}
newtype HappyWrap18 = HappyWrap18 ([Int])
happyIn18 :: ([Int]) -> (HappyAbsSyn t5 t12)
happyIn18 :: [Int] -> HappyAbsSyn t5 t12
happyIn18 x :: [Int]
x = HappyWrap18 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# ([Int] -> HappyWrap18
HappyWrap18 [Int]
x)
{-# INLINE happyIn18 #-}
happyOut18 :: (HappyAbsSyn t5 t12) -> HappyWrap18
happyOut18 :: HappyAbsSyn t5 t12 -> HappyWrap18
happyOut18 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap18
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut18 #-}
newtype HappyWrap19 = HappyWrap19 ([Int])
happyIn19 :: ([Int]) -> (HappyAbsSyn t5 t12)
happyIn19 :: [Int] -> HappyAbsSyn t5 t12
happyIn19 x :: [Int]
x = HappyWrap19 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# ([Int] -> HappyWrap19
HappyWrap19 [Int]
x)
{-# INLINE happyIn19 #-}
happyOut19 :: (HappyAbsSyn t5 t12) -> HappyWrap19
happyOut19 :: HappyAbsSyn t5 t12 -> HappyWrap19
happyOut19 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap19
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut19 #-}
newtype HappyWrap20 = HappyWrap20 ([Int])
happyIn20 :: ([Int]) -> (HappyAbsSyn t5 t12)
happyIn20 :: [Int] -> HappyAbsSyn t5 t12
happyIn20 x :: [Int]
x = HappyWrap20 -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# ([Int] -> HappyWrap20
HappyWrap20 [Int]
x)
{-# INLINE happyIn20 #-}
happyOut20 :: (HappyAbsSyn t5 t12) -> HappyWrap20
happyOut20 :: HappyAbsSyn t5 t12 -> HappyWrap20
happyOut20 x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> HappyWrap20
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOut20 #-}
happyInTok :: (Char) -> (HappyAbsSyn t5 t12)
happyInTok :: Char -> HappyAbsSyn t5 t12
happyInTok x :: Char
x = Char -> HappyAbsSyn t5 t12
Happy_GHC_Exts.unsafeCoerce# Char
x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn t5 t12) -> (Char)
happyOutTok :: HappyAbsSyn t5 t12 -> Char
happyOutTok x :: HappyAbsSyn t5 t12
x = HappyAbsSyn t5 t12 -> Char
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn t5 t12
x
{-# INLINE happyOutTok #-}


happyExpList :: HappyAddr
happyExpList :: HappyAddr
happyExpList = Addr# -> HappyAddr
HappyA# "\x00\x00\xa0\xff\x01\x00\x00\x00\x01\x00\x00\x00\x00\xe0\x7f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\xe0\x1f\x00\x00\x00\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\xfe\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfc\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x60\xff\x03\x00\x00\x00\xfc\xff\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfc\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\xf8\xff\x07\x00\x00\x00\x00\x00\x00\x00\x00\xfe\x07\x00\x00\x00\xf0\x3f\x00\x00\x00\x80\xff\x01\x00\x00\x00\xfc\x0f\x00\x00\x00\xe0\x7f\x00\x00\x00\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\xd8\xff\x00\x00\x00\x00\xfe\x01\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

{-# NOINLINE happyExpListPerState #-}
happyExpListPerState :: Int -> [[Char]]
happyExpListPerState st :: Int
st =
    [[Char]]
token_strs_expected
  where token_strs :: [[Char]]
token_strs = ["error","%dummy","%start_number","number","unsigned_number","expnum","hexadecimal","decimal","octal","binary","hexdigit","decdigit","octdigit","bindigit","exppart__'E'__","exppart__'P'__","fracpart__binary__","fracpart__decimal__","fracpart__hexadecimal__","fracpart__octal__","'+'","'-'","'.'","'0'","'1'","'2'","'3'","'4'","'5'","'6'","'7'","'8'","'9'","'A'","'B'","'C'","'D'","'E'","'F'","'O'","'P'","'X'","%eof"]
        bit_start :: Int
bit_start = Int
st Int -> Int -> Int
forall a. Num a => a -> a -> a
* 43
        bit_end :: Int
bit_end = (Int
st Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1) Int -> Int -> Int
forall a. Num a => a -> a -> a
* 43
        read_bit :: Int -> Bool
read_bit = HappyAddr -> Int -> Bool
readArrayBit HappyAddr
happyExpList
        bits :: [Bool]
bits = (Int -> Bool) -> [Int] -> [Bool]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Bool
read_bit [Int
bit_start..Int
bit_end Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1]
        bits_indexed :: [(Bool, Int)]
bits_indexed = [Bool] -> [Int] -> [(Bool, Int)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Bool]
bits [0..42]
        token_strs_expected :: [[Char]]
token_strs_expected = ((Bool, Int) -> [[Char]]) -> [(Bool, Int)] -> [[Char]]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Bool, Int) -> [[Char]]
f [(Bool, Int)]
bits_indexed
        f :: (Bool, Int) -> [[Char]]
f (False, _) = []
        f (True, nr :: Int
nr) = [[[Char]]
token_strs [[Char]] -> Int -> [Char]
forall a. [a] -> Int -> a
!! Int
nr]

happyActOffsets :: HappyAddr
happyActOffsets :: HappyAddr
happyActOffsets = Addr# -> HappyAddr
HappyA# "\x2d\x00\x22\x00\x42\x00\x19\x00\x00\x00\x38\x00\x00\x00\x67\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x6a\x00\x0e\x00\x00\x00\x71\x00\x4c\x00\x00\x00\x00\x00\x4c\x00\x00\x00\x21\x00\xfe\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x57\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x6a\x00\x00\x00\x8c\x00\x0e\x00\x00\x00\x4c\x00\x4c\x00\x4c\x00\x4c\x00\x4c\x00\x0e\x00\x00\x00\x21\x00\x6a\x00\x65\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets :: HappyAddr
happyGotoOffsets = Addr# -> HappyAddr
HappyA# "\x63\x00\x00\x00\x76\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7f\x00\x83\x00\x87\x00\x00\x00\x6e\x00\x89\x00\x00\x00\x00\x00\x74\x00\x00\x00\x64\x00\x5e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x00\x00\x00\x00\x8b\x00\x00\x00\x78\x00\x8f\x00\x00\x00\x94\x00\x91\x00\x93\x00\x94\x00\x94\x00\x9c\x00\x00\x00\x7e\x00\x8a\x00\x8e\x00\x00\x00\x00\x00"#

happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int#
happyAdjustOffset :: Int# -> Int#
happyAdjustOffset off :: Int#
off = Int#
off

happyDefActions :: HappyAddr
happyDefActions :: HappyAddr
happyDefActions = Addr# -> HappyAddr
HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xc2\xff\xf3\xff\xdd\xff\xdc\xff\xdb\xff\xda\xff\xd9\xff\xd8\xff\xd7\xff\xd6\xff\xd5\xff\xd4\xff\x00\x00\x00\x00\x00\x00\xf2\xff\xc9\xff\xc1\xff\xdd\xff\xfe\xff\xc0\xff\xfb\xff\x00\x00\xbf\xff\xf5\xff\xed\xff\xec\xff\xeb\xff\xea\xff\xe9\xff\xe8\xff\xe7\xff\xe6\xff\xe5\xff\xe4\xff\xe3\xff\xe2\xff\xe1\xff\xe0\xff\xdf\xff\xde\xff\xbc\xff\xf1\xff\xd3\xff\xd2\xff\xd1\xff\xd0\xff\xcf\xff\xce\xff\xcd\xff\xcc\xff\xc5\xff\xef\xff\xcb\xff\xca\xff\xee\xff\xf9\xff\xc4\xff\xf0\xff\xfa\xff\xbb\xff\xf4\xff\xc7\xff\xbe\xff\xc8\xff\xf6\xff\x00\x00\x00\x00\xf7\xff\xf8\xff\xbd\xff\xfc\xff\x00\x00\xba\xff\xc3\xff\xc6\xff"#

happyCheck :: HappyAddr
happyCheck :: HappyAddr
happyCheck = Addr# -> HappyAddr
HappyA# "\xff\xff\x03\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x01\x00\x02\x00\x02\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x02\x00\x17\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x03\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x03\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x00\x00\x01\x00\x07\x00\x02\x00\x04\x00\x04\x00\x04\x00\x05\x00\x08\x00\x08\x00\x0f\x00\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0f\x00\x01\x00\x09\x00\x0b\x00\x04\x00\x14\x00\x08\x00\x16\x00\x08\x00\x10\x00\x02\x00\x08\x00\x04\x00\x12\x00\x0c\x00\x06\x00\x08\x00\x0e\x00\x05\x00\x0a\x00\x03\x00\x06\x00\x09\x00\x04\x00\x07\x00\x0a\x00\x05\x00\x08\x00\x03\x00\x09\x00\x09\x00\x04\x00\x07\x00\x04\x00\x0a\x00\x08\x00\x0a\x00\x08\x00\x08\x00\x0d\x00\x03\x00\x04\x00\x05\x00\x15\x00\xff\xff\x07\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable :: HappyAddr
happyTable = Addr# -> HappyAddr
HappyA# "\x00\x00\x45\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x48\x00\x49\x00\x03\x00\x18\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x03\x00\xff\xff\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x17\x00\x18\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x18\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x42\x00\x31\x00\x32\x00\x33\x00\x34\x00\x35\x00\x36\x00\x37\x00\x38\x00\x03\x00\x04\x00\x42\x00\x45\x00\x05\x00\x46\x00\x3b\x00\x3c\x00\x06\x00\x06\x00\x43\x00\x31\x00\x32\x00\x33\x00\x34\x00\x35\x00\x36\x00\x37\x00\x38\x00\x12\x00\x18\x00\x3f\x00\x1a\x00\x05\x00\x13\x00\x14\x00\x14\x00\x06\x00\x40\x00\x50\x00\x14\x00\x46\x00\x1c\x00\x4c\x00\x38\x00\x06\x00\x15\x00\x2e\x00\x39\x00\x1c\x00\x4f\x00\x2f\x00\x19\x00\x1d\x00\x39\x00\x4e\x00\x06\x00\x4b\x00\x3f\x00\x2f\x00\x4a\x00\x1d\x00\x49\x00\x3c\x00\x06\x00\x3c\x00\x06\x00\x14\x00\x3d\x00\x3f\x00\x3b\x00\x3c\x00\x4e\x00\x00\x00\x42\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr :: Array
  Int
  (Int#
   -> Char
   -> Int#
   -> Happy_IntList
   -> HappyStk (HappyAbsSyn Number Int)
   -> [Char]
   -> HappyIdentity (HappyAbsSyn Number Int))
happyReduceArr = (Int, Int)
-> [(Int,
     Int#
     -> Char
     -> Int#
     -> Happy_IntList
     -> HappyStk (HappyAbsSyn Number Int)
     -> [Char]
     -> HappyIdentity (HappyAbsSyn Number Int))]
-> Array
     Int
     (Int#
      -> Char
      -> Int#
      -> Happy_IntList
      -> HappyStk (HappyAbsSyn Number Int)
      -> [Char]
      -> HappyIdentity (HappyAbsSyn Number Int))
forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
Happy_Data_Array.array (1, 69) [
	(1 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_1),
	(2 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_2),
	(3 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_3),
	(4 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_4),
	(5 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_5),
	(6 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_6),
	(7 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_7),
	(8 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_8),
	(9 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_9),
	(10 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_10),
	(11 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_11),
	(12 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_12),
	(13 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_13),
	(14 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_14),
	(15 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_15),
	(16 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_16),
	(17 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_17),
	(18 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_18),
	(19 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_19),
	(20 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_20),
	(21 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_21),
	(22 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_22),
	(23 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_23),
	(24 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_24),
	(25 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_25),
	(26 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_26),
	(27 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_27),
	(28 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_28),
	(29 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_29),
	(30 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_30),
	(31 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_31),
	(32 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_32),
	(33 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_33),
	(34 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_34),
	(35 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_35),
	(36 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_36),
	(37 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_37),
	(38 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_38),
	(39 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_39),
	(40 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_40),
	(41 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_41),
	(42 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_42),
	(43 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_43),
	(44 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_44),
	(45 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_45),
	(46 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_46),
	(47 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_47),
	(48 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_48),
	(49 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_49),
	(50 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_50),
	(51 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_51),
	(52 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_52),
	(53 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_53),
	(54 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_54),
	(55 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_55),
	(56 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_56),
	(57 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_57),
	(58 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_58),
	(59 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_59),
	(60 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_60),
	(61 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_61),
	(62 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_62),
	(63 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_63),
	(64 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_64),
	(65 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_65),
	(66 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_66),
	(67 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_67),
	(68 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_68),
	(69 , Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_69)
	]

happy_n_terms :: Int
happy_n_terms = 24 :: Int
happy_n_nonterms :: Int
happy_n_nonterms = 17 :: Int

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_1 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_1 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  0# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5 t12.
HappyAbsSyn Number t12 -> p -> HappyAbsSyn t5 t12
happyReduction_1
happyReduction_1 :: HappyAbsSyn Number t12 -> p -> HappyAbsSyn t5 t12
happyReduction_1 happy_x_2 :: HappyAbsSyn Number t12
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn Number t12 -> Number
forall t5 t12. HappyAbsSyn t5 t12 -> t5
happyOut5 HappyAbsSyn Number t12
happy_x_2 of { happy_var_2 :: Number
happy_var_2 -> 
	Number -> HappyAbsSyn t5 t12
forall t5 t12. Number -> HappyAbsSyn t5 t12
happyIn4
		 (Number -> Number
negNum Number
happy_var_2
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_2 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_2 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  0# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 t5 t12. HappyAbsSyn Number t12 -> HappyAbsSyn t5 t12
happyReduction_2
happyReduction_2 :: HappyAbsSyn Number t12 -> HappyAbsSyn t5 t12
happyReduction_2 happy_x_1 :: HappyAbsSyn Number t12
happy_x_1
	 =  case HappyAbsSyn Number t12 -> Number
forall t5 t12. HappyAbsSyn t5 t12 -> t5
happyOut5 HappyAbsSyn Number t12
happy_x_1 of { happy_var_1 :: Number
happy_var_1 -> 
	Number -> HappyAbsSyn t5 t12
forall t5 t12. Number -> HappyAbsSyn t5 t12
happyIn4
		 (Number
happy_var_1
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_3 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_3 = Int#
-> Int#
-> (HappyStk (HappyAbsSyn Number Int)
    -> HappyStk (HappyAbsSyn Number Int))
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce 5# 1# HappyStk (HappyAbsSyn Number Int)
-> HappyStk (HappyAbsSyn Number Int)
forall t12.
HappyStk (HappyAbsSyn Number t12)
-> HappyStk (HappyAbsSyn Number t12)
happyReduction_3
happyReduction_3 :: HappyStk (HappyAbsSyn Number t12)
-> HappyStk (HappyAbsSyn Number t12)
happyReduction_3 (happy_x_5 :: HappyAbsSyn Number t12
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn Number t12
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn Number t12
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn Number t12
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn Number t12
happy_x_1 `HappyStk`
	happyRest :: HappyStk (HappyAbsSyn Number t12)
happyRest)
	 = case HappyAbsSyn Number t12 -> HappyWrap7
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap7
happyOut7 HappyAbsSyn Number t12
happy_x_3 of { (HappyWrap7 happy_var_3 :: [Int]
happy_var_3) -> 
	case HappyAbsSyn Number t12 -> HappyWrap19
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap19
happyOut19 HappyAbsSyn Number t12
happy_x_4 of { (HappyWrap19 happy_var_4 :: [Int]
happy_var_4) -> 
	case HappyAbsSyn Number t12 -> HappyWrap16
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap16
happyOut16 HappyAbsSyn Number t12
happy_x_5 of { (HappyWrap16 happy_var_5 :: Integer
happy_var_5) -> 
	Number -> HappyAbsSyn Number t12
forall t5 t12. t5 -> HappyAbsSyn t5 t12
happyIn5
		 (Radix -> [Int] -> [Int] -> Number
mkNum (Integer -> Radix
Radix16 Integer
happy_var_5) [Int]
happy_var_3 [Int]
happy_var_4
	) HappyAbsSyn Number t12
-> HappyStk (HappyAbsSyn Number t12)
-> HappyStk (HappyAbsSyn Number t12)
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk (HappyAbsSyn Number t12)
happyRest}}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_4 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_4 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_3  1# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int
-> HappyAbsSyn Number Int
-> HappyAbsSyn Number Int
forall t5 t12 t5 t12 t5 t12 t12.
HappyAbsSyn t5 t12
-> HappyAbsSyn t5 t12
-> HappyAbsSyn t5 t12
-> HappyAbsSyn Number t12
happyReduction_4
happyReduction_4 :: HappyAbsSyn t5 t12
-> HappyAbsSyn t5 t12
-> HappyAbsSyn t5 t12
-> HappyAbsSyn Number t12
happyReduction_4 happy_x_3 :: HappyAbsSyn t5 t12
happy_x_3
	happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: HappyAbsSyn t5 t12
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap8
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap8
happyOut8 HappyAbsSyn t5 t12
happy_x_1 of { (HappyWrap8 happy_var_1 :: [Int]
happy_var_1) -> 
	case HappyAbsSyn t5 t12 -> HappyWrap18
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap18
happyOut18 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap18 happy_var_2 :: [Int]
happy_var_2) -> 
	case HappyAbsSyn t5 t12 -> HappyWrap15
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap15
happyOut15 HappyAbsSyn t5 t12
happy_x_3 of { (HappyWrap15 happy_var_3 :: Integer
happy_var_3) -> 
	Number -> HappyAbsSyn Number t12
forall t5 t12. t5 -> HappyAbsSyn t5 t12
happyIn5
		 (Radix -> [Int] -> [Int] -> Number
mkNum (Integer -> Radix
Radix10 Integer
happy_var_3) [Int]
happy_var_1 [Int]
happy_var_2
	)}}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_5 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_5 = Int#
-> Int#
-> (HappyStk (HappyAbsSyn Number Int)
    -> HappyStk (HappyAbsSyn Number Int))
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce 4# 1# HappyStk (HappyAbsSyn Number Int)
-> HappyStk (HappyAbsSyn Number Int)
forall t12.
HappyStk (HappyAbsSyn Number t12)
-> HappyStk (HappyAbsSyn Number t12)
happyReduction_5
happyReduction_5 :: HappyStk (HappyAbsSyn Number t12)
-> HappyStk (HappyAbsSyn Number t12)
happyReduction_5 (happy_x_4 :: HappyAbsSyn Number t12
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn Number t12
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn Number t12
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn Number t12
happy_x_1 `HappyStk`
	happyRest :: HappyStk (HappyAbsSyn Number t12)
happyRest)
	 = case HappyAbsSyn Number t12 -> HappyWrap9
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap9
happyOut9 HappyAbsSyn Number t12
happy_x_3 of { (HappyWrap9 happy_var_3 :: [Int]
happy_var_3) -> 
	case HappyAbsSyn Number t12 -> HappyWrap20
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap20
happyOut20 HappyAbsSyn Number t12
happy_x_4 of { (HappyWrap20 happy_var_4 :: [Int]
happy_var_4) -> 
	Number -> HappyAbsSyn Number t12
forall t5 t12. t5 -> HappyAbsSyn t5 t12
happyIn5
		 (Radix -> [Int] -> [Int] -> Number
mkNum Radix
Radix8 [Int]
happy_var_3 [Int]
happy_var_4
	) HappyAbsSyn Number t12
-> HappyStk (HappyAbsSyn Number t12)
-> HappyStk (HappyAbsSyn Number t12)
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk (HappyAbsSyn Number t12)
happyRest}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_6 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_6 = Int#
-> Int#
-> (HappyStk (HappyAbsSyn Number Int)
    -> HappyStk (HappyAbsSyn Number Int))
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce 4# 1# HappyStk (HappyAbsSyn Number Int)
-> HappyStk (HappyAbsSyn Number Int)
forall t12.
HappyStk (HappyAbsSyn Number t12)
-> HappyStk (HappyAbsSyn Number t12)
happyReduction_6
happyReduction_6 :: HappyStk (HappyAbsSyn Number t12)
-> HappyStk (HappyAbsSyn Number t12)
happyReduction_6 (happy_x_4 :: HappyAbsSyn Number t12
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn Number t12
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn Number t12
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn Number t12
happy_x_1 `HappyStk`
	happyRest :: HappyStk (HappyAbsSyn Number t12)
happyRest)
	 = case HappyAbsSyn Number t12 -> HappyWrap10
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap10
happyOut10 HappyAbsSyn Number t12
happy_x_3 of { (HappyWrap10 happy_var_3 :: [Int]
happy_var_3) -> 
	case HappyAbsSyn Number t12 -> HappyWrap17
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap17
happyOut17 HappyAbsSyn Number t12
happy_x_4 of { (HappyWrap17 happy_var_4 :: [Int]
happy_var_4) -> 
	Number -> HappyAbsSyn Number t12
forall t5 t12. t5 -> HappyAbsSyn t5 t12
happyIn5
		 (Radix -> [Int] -> [Int] -> Number
mkNum Radix
Radix2 [Int]
happy_var_3 [Int]
happy_var_4
	) HappyAbsSyn Number t12
-> HappyStk (HappyAbsSyn Number t12)
-> HappyStk (HappyAbsSyn Number t12)
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk (HappyAbsSyn Number t12)
happyRest}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_7 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_7 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  2# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 p t5 t12.
HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_7
happyReduction_7 :: HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_7 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap8
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap8
happyOut8 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap8 happy_var_2 :: [Int]
happy_var_2) -> 
	Integer -> HappyAbsSyn t5 t12
forall t5 t12. Integer -> HappyAbsSyn t5 t12
happyIn6
		 (Int -> [Int] -> Integer
toInt 10 [Int]
happy_var_2
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_8 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_8 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  2# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 p t5 t12.
HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_8
happyReduction_8 :: HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_8 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap8
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap8
happyOut8 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap8 happy_var_2 :: [Int]
happy_var_2) -> 
	Integer -> HappyAbsSyn t5 t12
forall t5 t12. Integer -> HappyAbsSyn t5 t12
happyIn6
		 (- Int -> [Int] -> Integer
toInt 10 [Int]
happy_var_2
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_9 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_9 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  2# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 t5 t12. HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_9
happyReduction_9 :: HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_9 happy_x_1 :: HappyAbsSyn t5 t12
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap8
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap8
happyOut8 HappyAbsSyn t5 t12
happy_x_1 of { (HappyWrap8 happy_var_1 :: [Int]
happy_var_1) -> 
	Integer -> HappyAbsSyn t5 t12
forall t5 t12. Integer -> HappyAbsSyn t5 t12
happyIn6
		 (Int -> [Int] -> Integer
toInt 10 [Int]
happy_var_1
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_10 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_10 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  3# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 t5 t12. HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_10
happyReduction_10 :: HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_10 happy_x_1 :: HappyAbsSyn t5 t12
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap11
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap11
happyOut11 HappyAbsSyn t5 t12
happy_x_1 of { (HappyWrap11 happy_var_1 :: Int
happy_var_1) -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn7
		 ([Int
happy_var_1]
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_11 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_11 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  3# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 t5 t12 t5 t12.
HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_11
happyReduction_11 :: HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_11 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: HappyAbsSyn t5 t12
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap7
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap7
happyOut7 HappyAbsSyn t5 t12
happy_x_1 of { (HappyWrap7 happy_var_1 :: [Int]
happy_var_1) -> 
	case HappyAbsSyn t5 t12 -> HappyWrap11
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap11
happyOut11 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap11 happy_var_2 :: Int
happy_var_2) -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn7
		 (Int
happy_var_2 Int -> [Int] -> [Int]
forall k1. k1 -> [k1] -> [k1]
: [Int]
happy_var_1
	)}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_12 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_12 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  4# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t5 t12. HappyAbsSyn t5 Int -> HappyAbsSyn t5 t12
happyReduction_12
happyReduction_12 :: HappyAbsSyn t5 Int -> HappyAbsSyn t5 t12
happyReduction_12 happy_x_1 :: HappyAbsSyn t5 Int
happy_x_1
	 =  case HappyAbsSyn t5 Int -> Int
forall t5 t12. HappyAbsSyn t5 t12 -> t12
happyOut12 HappyAbsSyn t5 Int
happy_x_1 of { happy_var_1 :: Int
happy_var_1 -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn8
		 ([Int
happy_var_1]
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_13 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_13 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  4# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t5 t12 t5 t12.
HappyAbsSyn t5 Int -> HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_13
happyReduction_13 :: HappyAbsSyn t5 Int -> HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_13 happy_x_2 :: HappyAbsSyn t5 Int
happy_x_2
	happy_x_1 :: HappyAbsSyn t5 t12
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap8
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap8
happyOut8 HappyAbsSyn t5 t12
happy_x_1 of { (HappyWrap8 happy_var_1 :: [Int]
happy_var_1) -> 
	case HappyAbsSyn t5 Int -> Int
forall t5 t12. HappyAbsSyn t5 t12 -> t12
happyOut12 HappyAbsSyn t5 Int
happy_x_2 of { happy_var_2 :: Int
happy_var_2 -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn8
		 (Int
happy_var_2 Int -> [Int] -> [Int]
forall k1. k1 -> [k1] -> [k1]
: [Int]
happy_var_1
	)}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_14 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_14 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  5# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 t5 t12. HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_14
happyReduction_14 :: HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_14 happy_x_1 :: HappyAbsSyn t5 t12
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap13
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap13
happyOut13 HappyAbsSyn t5 t12
happy_x_1 of { (HappyWrap13 happy_var_1 :: Int
happy_var_1) -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn9
		 ([Int
happy_var_1]
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_15 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_15 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  5# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 t5 t12 t5 t12.
HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_15
happyReduction_15 :: HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_15 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: HappyAbsSyn t5 t12
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap9
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap9
happyOut9 HappyAbsSyn t5 t12
happy_x_1 of { (HappyWrap9 happy_var_1 :: [Int]
happy_var_1) -> 
	case HappyAbsSyn t5 t12 -> HappyWrap13
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap13
happyOut13 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap13 happy_var_2 :: Int
happy_var_2) -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn9
		 (Int
happy_var_2 Int -> [Int] -> [Int]
forall k1. k1 -> [k1] -> [k1]
: [Int]
happy_var_1
	)}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_16 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_16 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  6# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 t5 t12. HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_16
happyReduction_16 :: HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_16 happy_x_1 :: HappyAbsSyn t5 t12
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap14
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap14
happyOut14 HappyAbsSyn t5 t12
happy_x_1 of { (HappyWrap14 happy_var_1 :: Int
happy_var_1) -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn10
		 ([Int
happy_var_1]
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_17 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_17 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  6# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 t5 t12 t5 t12.
HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_17
happyReduction_17 :: HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12 -> HappyAbsSyn t5 t12
happyReduction_17 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: HappyAbsSyn t5 t12
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap10
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap10
happyOut10 HappyAbsSyn t5 t12
happy_x_1 of { (HappyWrap10 happy_var_1 :: [Int]
happy_var_1) -> 
	case HappyAbsSyn t5 t12 -> HappyWrap14
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap14
happyOut14 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap14 happy_var_2 :: Int
happy_var_2) -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn10
		 (Int
happy_var_2 Int -> [Int] -> [Int]
forall k1. k1 -> [k1] -> [k1]
: [Int]
happy_var_1
	)}}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_18 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_18 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_18
happyReduction_18 :: p -> HappyAbsSyn t5 t12
happyReduction_18 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (0
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_19 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_19 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_19
happyReduction_19 :: p -> HappyAbsSyn t5 t12
happyReduction_19 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (1
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_20 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_20 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_20
happyReduction_20 :: p -> HappyAbsSyn t5 t12
happyReduction_20 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (2
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_21 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_21 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_21
happyReduction_21 :: p -> HappyAbsSyn t5 t12
happyReduction_21 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (3
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_22 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_22 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_22
happyReduction_22 :: p -> HappyAbsSyn t5 t12
happyReduction_22 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (4
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_23 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_23 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_23
happyReduction_23 :: p -> HappyAbsSyn t5 t12
happyReduction_23 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (5
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_24 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_24 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_24
happyReduction_24 :: p -> HappyAbsSyn t5 t12
happyReduction_24 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (6
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_25 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_25 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_25
happyReduction_25 :: p -> HappyAbsSyn t5 t12
happyReduction_25 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (7
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_26 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_26 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_26
happyReduction_26 :: p -> HappyAbsSyn t5 t12
happyReduction_26 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (8
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_27 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_27 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_27
happyReduction_27 :: p -> HappyAbsSyn t5 t12
happyReduction_27 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (9
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_28 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_28 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_28
happyReduction_28 :: p -> HappyAbsSyn t5 t12
happyReduction_28 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (10
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_29 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_29 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_29
happyReduction_29 :: p -> HappyAbsSyn t5 t12
happyReduction_29 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (11
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_30 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_30 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_30
happyReduction_30 :: p -> HappyAbsSyn t5 t12
happyReduction_30 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (12
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_31 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_31 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_31
happyReduction_31 :: p -> HappyAbsSyn t5 t12
happyReduction_31 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (13
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_32 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_32 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_32
happyReduction_32 :: p -> HappyAbsSyn t5 t12
happyReduction_32 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (14
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_33 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_33 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  7# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_33
happyReduction_33 :: p -> HappyAbsSyn t5 t12
happyReduction_33 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn11
		 (15
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_34 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_34 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  8# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5. Num t12 => p -> HappyAbsSyn t5 t12
happyReduction_34
happyReduction_34 :: p -> HappyAbsSyn t5 t12
happyReduction_34 happy_x_1 :: p
happy_x_1
	 =  t12 -> HappyAbsSyn t5 t12
forall t12 t5. t12 -> HappyAbsSyn t5 t12
happyIn12
		 (0
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_35 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_35 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  8# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5. Num t12 => p -> HappyAbsSyn t5 t12
happyReduction_35
happyReduction_35 :: p -> HappyAbsSyn t5 t12
happyReduction_35 happy_x_1 :: p
happy_x_1
	 =  t12 -> HappyAbsSyn t5 t12
forall t12 t5. t12 -> HappyAbsSyn t5 t12
happyIn12
		 (1
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_36 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_36 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  8# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5. Num t12 => p -> HappyAbsSyn t5 t12
happyReduction_36
happyReduction_36 :: p -> HappyAbsSyn t5 t12
happyReduction_36 happy_x_1 :: p
happy_x_1
	 =  t12 -> HappyAbsSyn t5 t12
forall t12 t5. t12 -> HappyAbsSyn t5 t12
happyIn12
		 (2
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_37 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_37 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  8# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5. Num t12 => p -> HappyAbsSyn t5 t12
happyReduction_37
happyReduction_37 :: p -> HappyAbsSyn t5 t12
happyReduction_37 happy_x_1 :: p
happy_x_1
	 =  t12 -> HappyAbsSyn t5 t12
forall t12 t5. t12 -> HappyAbsSyn t5 t12
happyIn12
		 (3
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_38 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_38 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  8# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5. Num t12 => p -> HappyAbsSyn t5 t12
happyReduction_38
happyReduction_38 :: p -> HappyAbsSyn t5 t12
happyReduction_38 happy_x_1 :: p
happy_x_1
	 =  t12 -> HappyAbsSyn t5 t12
forall t12 t5. t12 -> HappyAbsSyn t5 t12
happyIn12
		 (4
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_39 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_39 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  8# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5. Num t12 => p -> HappyAbsSyn t5 t12
happyReduction_39
happyReduction_39 :: p -> HappyAbsSyn t5 t12
happyReduction_39 happy_x_1 :: p
happy_x_1
	 =  t12 -> HappyAbsSyn t5 t12
forall t12 t5. t12 -> HappyAbsSyn t5 t12
happyIn12
		 (5
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_40 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_40 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  8# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5. Num t12 => p -> HappyAbsSyn t5 t12
happyReduction_40
happyReduction_40 :: p -> HappyAbsSyn t5 t12
happyReduction_40 happy_x_1 :: p
happy_x_1
	 =  t12 -> HappyAbsSyn t5 t12
forall t12 t5. t12 -> HappyAbsSyn t5 t12
happyIn12
		 (6
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_41 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_41 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  8# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5. Num t12 => p -> HappyAbsSyn t5 t12
happyReduction_41
happyReduction_41 :: p -> HappyAbsSyn t5 t12
happyReduction_41 happy_x_1 :: p
happy_x_1
	 =  t12 -> HappyAbsSyn t5 t12
forall t12 t5. t12 -> HappyAbsSyn t5 t12
happyIn12
		 (7
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_42 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_42 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  8# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5. Num t12 => p -> HappyAbsSyn t5 t12
happyReduction_42
happyReduction_42 :: p -> HappyAbsSyn t5 t12
happyReduction_42 happy_x_1 :: p
happy_x_1
	 =  t12 -> HappyAbsSyn t5 t12
forall t12 t5. t12 -> HappyAbsSyn t5 t12
happyIn12
		 (8
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_43 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_43 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  8# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t12 p t5. Num t12 => p -> HappyAbsSyn t5 t12
happyReduction_43
happyReduction_43 :: p -> HappyAbsSyn t5 t12
happyReduction_43 happy_x_1 :: p
happy_x_1
	 =  t12 -> HappyAbsSyn t5 t12
forall t12 t5. t12 -> HappyAbsSyn t5 t12
happyIn12
		 (9
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_44 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_44 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  9# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_44
happyReduction_44 :: p -> HappyAbsSyn t5 t12
happyReduction_44 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn13
		 (0
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_45 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_45 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  9# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_45
happyReduction_45 :: p -> HappyAbsSyn t5 t12
happyReduction_45 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn13
		 (1
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_46 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_46 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  9# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_46
happyReduction_46 :: p -> HappyAbsSyn t5 t12
happyReduction_46 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn13
		 (2
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_47 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_47 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  9# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_47
happyReduction_47 :: p -> HappyAbsSyn t5 t12
happyReduction_47 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn13
		 (3
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_48 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_48 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  9# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_48
happyReduction_48 :: p -> HappyAbsSyn t5 t12
happyReduction_48 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn13
		 (4
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_49 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_49 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  9# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_49
happyReduction_49 :: p -> HappyAbsSyn t5 t12
happyReduction_49 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn13
		 (5
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_50 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_50 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  9# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_50
happyReduction_50 :: p -> HappyAbsSyn t5 t12
happyReduction_50 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn13
		 (6
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_51 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_51 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  9# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_51
happyReduction_51 :: p -> HappyAbsSyn t5 t12
happyReduction_51 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn13
		 (7
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_52 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_52 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  10# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_52
happyReduction_52 :: p -> HappyAbsSyn t5 t12
happyReduction_52 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn14
		 (0
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_53 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_53 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  10# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_53
happyReduction_53 :: p -> HappyAbsSyn t5 t12
happyReduction_53 happy_x_1 :: p
happy_x_1
	 =  Int -> HappyAbsSyn t5 t12
forall t5 t12. Int -> HappyAbsSyn t5 t12
happyIn14
		 (1
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_54 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_54 = Int#
-> HappyAbsSyn Number Int
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_0  11# HappyAbsSyn Number Int
forall t5 t12. HappyAbsSyn t5 t12
happyReduction_54
happyReduction_54 :: HappyAbsSyn t5 t12
happyReduction_54  =  Integer -> HappyAbsSyn t5 t12
forall t5 t12. Integer -> HappyAbsSyn t5 t12
happyIn15
		 (0
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_55 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_55 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  11# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 p t5 t12.
HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_55
happyReduction_55 :: HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_55 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap6
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap6
happyOut6 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap6 happy_var_2 :: Integer
happy_var_2) -> 
	Integer -> HappyAbsSyn t5 t12
forall t5 t12. Integer -> HappyAbsSyn t5 t12
happyIn15
		 (Integer
happy_var_2
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_56 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_56 = Int#
-> HappyAbsSyn Number Int
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_0  12# HappyAbsSyn Number Int
forall t5 t12. HappyAbsSyn t5 t12
happyReduction_56
happyReduction_56 :: HappyAbsSyn t5 t12
happyReduction_56  =  Integer -> HappyAbsSyn t5 t12
forall t5 t12. Integer -> HappyAbsSyn t5 t12
happyIn16
		 (0
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_57 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_57 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  12# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 p t5 t12.
HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_57
happyReduction_57 :: HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_57 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap6
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap6
happyOut6 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap6 happy_var_2 :: Integer
happy_var_2) -> 
	Integer -> HappyAbsSyn t5 t12
forall t5 t12. Integer -> HappyAbsSyn t5 t12
happyIn16
		 (Integer
happy_var_2
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_58 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_58 = Int#
-> HappyAbsSyn Number Int
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_0  13# HappyAbsSyn Number Int
forall t5 t12. HappyAbsSyn t5 t12
happyReduction_58
happyReduction_58 :: HappyAbsSyn t5 t12
happyReduction_58  =  [Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn17
		 ([]
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_59 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_59 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  13# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_59
happyReduction_59 :: p -> HappyAbsSyn t5 t12
happyReduction_59 happy_x_1 :: p
happy_x_1
	 =  [Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn17
		 ([]
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_60 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_60 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  13# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 p t5 t12.
HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_60
happyReduction_60 :: HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_60 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap10
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap10
happyOut10 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap10 happy_var_2 :: [Int]
happy_var_2) -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn17
		 ([Int]
happy_var_2
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_61 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_61 = Int#
-> HappyAbsSyn Number Int
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_0  14# HappyAbsSyn Number Int
forall t5 t12. HappyAbsSyn t5 t12
happyReduction_61
happyReduction_61 :: HappyAbsSyn t5 t12
happyReduction_61  =  [Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn18
		 ([]
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_62 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_62 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  14# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_62
happyReduction_62 :: p -> HappyAbsSyn t5 t12
happyReduction_62 happy_x_1 :: p
happy_x_1
	 =  [Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn18
		 ([]
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_63 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_63 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  14# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 p t5 t12.
HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_63
happyReduction_63 :: HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_63 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap8
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap8
happyOut8 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap8 happy_var_2 :: [Int]
happy_var_2) -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn18
		 ([Int]
happy_var_2
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_64 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_64 = Int#
-> HappyAbsSyn Number Int
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_0  15# HappyAbsSyn Number Int
forall t5 t12. HappyAbsSyn t5 t12
happyReduction_64
happyReduction_64 :: HappyAbsSyn t5 t12
happyReduction_64  =  [Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn19
		 ([]
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_65 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_65 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  15# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_65
happyReduction_65 :: p -> HappyAbsSyn t5 t12
happyReduction_65 happy_x_1 :: p
happy_x_1
	 =  [Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn19
		 ([]
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_66 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_66 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  15# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 p t5 t12.
HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_66
happyReduction_66 :: HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_66 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap7
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap7
happyOut7 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap7 happy_var_2 :: [Int]
happy_var_2) -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn19
		 ([Int]
happy_var_2
	)}

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_67 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_67 = Int#
-> HappyAbsSyn Number Int
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_0  16# HappyAbsSyn Number Int
forall t5 t12. HappyAbsSyn t5 t12
happyReduction_67
happyReduction_67 :: HappyAbsSyn t5 t12
happyReduction_67  =  [Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn20
		 ([]
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_68 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_68 = Int#
-> (HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_1  16# HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall p t5 t12. p -> HappyAbsSyn t5 t12
happyReduction_68
happyReduction_68 :: p -> HappyAbsSyn t5 t12
happyReduction_68 happy_x_1 :: p
happy_x_1
	 =  [Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn20
		 ([]
	)

#if __GLASGOW_HASKELL__ >= 710
#endif
happyReduce_69 :: Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyReduce_69 = Int#
-> (HappyAbsSyn Number Int
    -> HappyAbsSyn Number Int -> HappyAbsSyn Number Int)
-> Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happySpecReduce_2  16# HappyAbsSyn Number Int
-> HappyAbsSyn Number Int -> HappyAbsSyn Number Int
forall t5 t12 p t5 t12.
HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_69
happyReduction_69 :: HappyAbsSyn t5 t12 -> p -> HappyAbsSyn t5 t12
happyReduction_69 happy_x_2 :: HappyAbsSyn t5 t12
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn t5 t12 -> HappyWrap9
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap9
happyOut9 HappyAbsSyn t5 t12
happy_x_2 of { (HappyWrap9 happy_var_2 :: [Int]
happy_var_2) -> 
	[Int] -> HappyAbsSyn t5 t12
forall t5 t12. [Int] -> HappyAbsSyn t5 t12
happyIn20
		 ([Int]
happy_var_2
	)}

happyNewToken :: Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyNewToken action :: Int#
action sts :: Happy_IntList
sts stk :: HappyStk (HappyAbsSyn Number Int)
stk [] =
	Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyDoAction 23# Char
forall a. a
notHappyAtAll Int#
action Happy_IntList
sts HappyStk (HappyAbsSyn Number Int)
stk []

happyNewToken action :: Int#
action sts :: Happy_IntList
sts stk :: HappyStk (HappyAbsSyn Number Int)
stk (tk :: Char
tk:tks :: [Char]
tks) =
	let cont :: Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont i :: Int#
i = Int#
-> Char
-> Int#
-> Happy_IntList
-> HappyStk (HappyAbsSyn Number Int)
-> [Char]
-> HappyIdentity (HappyAbsSyn Number Int)
happyDoAction Int#
i Char
tk Int#
action Happy_IntList
sts HappyStk (HappyAbsSyn Number Int)
stk [Char]
tks in
	case Char
tk of {
	'+' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 1#;
	'-' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 2#;
	'.' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 3#;
	'0' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 4#;
	'1' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 5#;
	'2' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 6#;
	'3' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 7#;
	'4' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 8#;
	'5' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 9#;
	'6' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 10#;
	'7' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 11#;
	'8' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 12#;
	'9' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 13#;
	'A' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 14#;
	'B' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 15#;
	'C' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 16#;
	'D' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 17#;
	'E' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 18#;
	'F' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 19#;
	'O' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 20#;
	'P' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 21#;
	'X' -> Int# -> HappyIdentity (HappyAbsSyn Number Int)
cont 22#;
	_ -> ([Char], [[Char]]) -> HappyIdentity (HappyAbsSyn Number Int)
forall a. ([Char], [[Char]]) -> HappyIdentity a
happyError' ((Char
tkChar -> [Char] -> [Char]
forall k1. k1 -> [k1] -> [k1]
:[Char]
tks), [])
	}

happyError_ :: [[Char]] -> Int# -> Char -> [Char] -> HappyIdentity a
happyError_ explist :: [[Char]]
explist 23# tk :: Char
tk tks :: [Char]
tks = ([Char], [[Char]]) -> HappyIdentity a
forall a. ([Char], [[Char]]) -> HappyIdentity a
happyError' ([Char]
tks, [[Char]]
explist)
happyError_ explist :: [[Char]]
explist _ tk :: Char
tk tks :: [Char]
tks = ([Char], [[Char]]) -> HappyIdentity a
forall a. ([Char], [[Char]]) -> HappyIdentity a
happyError' ((Char
tkChar -> [Char] -> [Char]
forall k1. k1 -> [k1] -> [k1]
:[Char]
tks), [[Char]]
explist)

newtype HappyIdentity a = HappyIdentity a
happyIdentity :: a -> HappyIdentity a
happyIdentity = a -> HappyIdentity a
forall a. a -> HappyIdentity a
HappyIdentity
happyRunIdentity :: HappyIdentity a -> a
happyRunIdentity (HappyIdentity a :: a
a) = a
a

instance Functor HappyIdentity where
    fmap :: (a -> b) -> HappyIdentity a -> HappyIdentity b
fmap f :: a -> b
f (HappyIdentity a :: a
a) = b -> HappyIdentity b
forall a. a -> HappyIdentity a
HappyIdentity (a -> b
f a
a)

instance Applicative HappyIdentity where
    pure :: a -> HappyIdentity a
pure  = a -> HappyIdentity a
forall a. a -> HappyIdentity a
HappyIdentity
    <*> :: HappyIdentity (a -> b) -> HappyIdentity a -> HappyIdentity b
(<*>) = HappyIdentity (a -> b) -> HappyIdentity a -> HappyIdentity b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Monad HappyIdentity where
    return :: a -> HappyIdentity a
return = a -> HappyIdentity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
    (HappyIdentity p :: a
p) >>= :: HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
>>= q :: a -> HappyIdentity b
q = a -> HappyIdentity b
q a
p

happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen :: HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen = HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
happyReturn :: () => a -> HappyIdentity a
happyReturn :: a -> HappyIdentity a
happyReturn = (a -> HappyIdentity a
forall (m :: * -> *) a. Monad m => a -> m a
return)
happyThen1 :: m t -> (t -> t -> m b) -> t -> m b
happyThen1 m :: m t
m k :: t -> t -> m b
k tks :: t
tks = m t -> (t -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=) m t
m (\a :: t
a -> t -> t -> m b
k t
a t
tks)
happyReturn1 :: () => a -> b -> HappyIdentity a
happyReturn1 :: a -> b -> HappyIdentity a
happyReturn1 = \a :: a
a tks :: b
tks -> (a -> HappyIdentity a
forall (m :: * -> *) a. Monad m => a -> m a
return) a
a
happyError' :: () => ([(Char)], [String]) -> HappyIdentity a
happyError' :: ([Char], [[Char]]) -> HappyIdentity a
happyError' = a -> HappyIdentity a
forall a. a -> HappyIdentity a
HappyIdentity (a -> HappyIdentity a)
-> (([Char], [[Char]]) -> a)
-> ([Char], [[Char]])
-> HappyIdentity a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (\(tokens :: [Char]
tokens, _) -> [Char] -> a
forall p. [Char] -> p
happyError [Char]
tokens)
number :: [Char] -> Number
number tks :: [Char]
tks = HappyIdentity Number -> Number
forall a. HappyIdentity a -> a
happyRunIdentity HappyIdentity Number
happySomeParser where
 happySomeParser :: HappyIdentity Number
happySomeParser = HappyIdentity (HappyAbsSyn Number Int)
-> (HappyAbsSyn Number Int -> HappyIdentity Number)
-> HappyIdentity Number
forall a b.
HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen (Int# -> [Char] -> HappyIdentity (HappyAbsSyn Number Int)
happyParse 0# [Char]
tks) (\x :: HappyAbsSyn Number Int
x -> Number -> HappyIdentity Number
forall a. a -> HappyIdentity a
happyReturn (let {(HappyWrap4 x' :: Number
x') = HappyAbsSyn Number Int -> HappyWrap4
forall t5 t12. HappyAbsSyn t5 t12 -> HappyWrap4
happyOut4 HappyAbsSyn Number Int
x} in Number
x'))

happySeq :: a -> b -> b
happySeq = a -> b -> b
forall a b. a -> b -> b
happyDontSeq


mkNum :: Radix -> [Int] -> [Int] -> Number
mkNum :: Radix -> [Int] -> [Int] -> Number
mkNum radix :: Radix
radix coef :: [Int]
coef frac :: [Int]
frac =
  Radix -> Rational -> Number
MkNumber Radix
radix (Integer -> Rational
forall a. Num a => Integer -> a
fromInteger (Int -> [Int] -> Integer
toInt Int
base [Int]
coef) Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
+ Int -> [Int] -> Rational
toFrac Int
base [Int]
frac)
  where
    base :: Int
base = Radix -> Int
radixToInt Radix
radix

negNum :: Number -> Number
negNum :: Number -> Number
negNum n :: Number
n = Number
n { numberCoefficient :: Rational
numberCoefficient = - Number -> Rational
numberCoefficient Number
n }

toInt :: Int -> [Int] -> Integer
toInt :: Int -> [Int] -> Integer
toInt base :: Int
base = (Integer -> Int -> Integer) -> Integer -> [Int] -> Integer
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' (\acc :: Integer
acc i :: Int
i -> Integer
accInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
base' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Int -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i) 0 ([Int] -> Integer) -> ([Int] -> [Int]) -> [Int] -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Int] -> [Int]
forall a. [a] -> [a]
reverse
  where base' :: Integer
base' = Int -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
base

toFrac :: Int -> [Int] -> Rational
toFrac :: Int -> [Int] -> Rational
toFrac base :: Int
base = (Rational -> Int -> Rational) -> Rational -> [Int] -> Rational
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' (\acc :: Rational
acc i :: Int
i -> (Int -> Rational
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
iRational -> Rational -> Rational
forall a. Num a => a -> a -> a
+Rational
acc)Rational -> Rational -> Rational
forall a. Fractional a => a -> a -> a
/Rational
base') 0
  where base' :: Rational
base' = Int -> Rational
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
base

happyError :: [Char] -> p
happyError [] = [Char] -> p
forall a. HasCallStack => [Char] -> a
error "Unexpected EOF"
happyError (c :: Char
c:_) = [Char] -> p
forall a. HasCallStack => [Char] -> a
error ("Unexpected: "[Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++[Char
c])
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- $Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp $













-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif



















data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList








































infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is ERROR_TOK, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) = 
        (happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
        = {- nothing -}
          case action of
                0#           -> {- nothing -}
                                     happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Int)) i tk st
                -1#          -> {- nothing -}
                                     happyAccept i tk st
                n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}
                                                   (happyReduceArr Happy_Data_Array.! rule) i tk st
                                                   where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
                n                 -> {- nothing -}
                                     happyShift new_state i tk st
                                     where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where off    = happyAdjustOffset (indexShortOffAddr happyActOffsets st)
         off_i  = (off Happy_GHC_Exts.+# i)
         check  = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
                  then EQ(indexShortOffAddr happyCheck off_i, i)
                  else False
         action
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st




indexShortOffAddr (HappyA# arr) off =
        Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#




{-# INLINE happyLt #-}
happyLt x y = LT(x,y)


readArrayBit arr bit =
    Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `mod` 16)
  where unbox_int (Happy_GHC_Exts.I# x) = x






data HappyAddr = HappyA# Happy_GHC_Exts.Addr#


-----------------------------------------------------------------------------
-- HappyState data type (not arrays)













-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
         sts1@((HappyCons (st1@(action)) (_))) ->
                let r = fn stk in  -- it doesn't hurt to always seq here...
                happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
          let drop_stk = happyDropStk k stk in
          happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
         let drop_stk = happyDropStk k stk

             off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1)
             off_i = (off Happy_GHC_Exts.+# nt)
             new_state = indexShortOffAddr happyTable off_i




          in
          happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))

happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st = 
   {- nothing -}
   happyDoAction j tk new_state
   where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st)
         off_i = (off Happy_GHC_Exts.+# nt)
         new_state = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (ERROR_TOK is the error token)

-- parse error if we are in recovery and we fail again
happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--      trace "failing" $ 
        happyError_ explist i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  ERROR_TOK tk old_st CONS(HAPPYSTATE(action),sts) 
                                                (saved_tok `HappyStk` _ `HappyStk` stk) =
--      trace ("discarding state, depth " ++ show (length stk))  $
        DO_ACTION(action,ERROR_TOK,tk,sts,(saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail explist i tk (action) sts stk =
--      trace "entering error recovery" $
        happyDoAction 0# tk action sts ((Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.