{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE CPP #-}
module Data.Key (
Key
, Keyed(..)
, (<#$>)
, keyed
, Zip(..)
, ZipWithKey(..)
, Indexable(..)
, (!)
, Lookup(..)
, lookupDefault
, Adjustable(..)
, FoldableWithKey(..)
, foldrWithKey'
, foldlWithKey'
, foldrWithKeyM
, foldlWithKeyM
, traverseWithKey_
, forWithKey_
, mapWithKeyM_
, forWithKeyM_
, concatMapWithKey
, anyWithKey
, allWithKey
, findWithKey
, FoldableWithKey1(..)
, traverseWithKey1_
, forWithKey1_
, foldMapWithKeyDefault1
, TraversableWithKey(..)
, forWithKey
, forWithKeyM
, mapAccumWithKeyL
, mapAccumWithKeyR
, mapWithKeyDefault
, foldMapWithKeyDefault
, TraversableWithKey1(..)
, foldMapWithKey1Default
) where
import Control.Applicative
import Control.Comonad.Trans.Traced
import Control.Monad.Free
import Control.Comonad.Cofree
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Reader
import qualified Data.Array as Array
import Data.Array (Array)
import Data.Functor.Identity
import Data.Functor.Bind
import Data.Functor.Compose
import Data.Functor.Constant
import Data.Functor.Product
import qualified Data.Functor.Sum as Functor
import Data.Foldable
import Data.Hashable
import Data.HashMap.Lazy (HashMap)
import qualified Data.HashMap.Lazy as HashMap
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import Data.Ix hiding (index)
import Data.Map (Map)
import qualified Data.Map as Map
#ifdef MIN_VERSION_base_orphans
import Data.Orphans ()
#endif
import Data.Proxy
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NonEmpty
import Data.Maybe (fromJust, listToMaybe)
import qualified Data.Monoid as Monoid
import Data.Semigroup hiding (Product)
import Data.Semigroup.Foldable
import Data.Semigroup.Traversable
import Data.Sequence (Seq, ViewL(EmptyL), viewl, (|>))
import qualified Data.Sequence as Seq
import Data.Tagged
import Data.Traversable
import Data.Tree
import qualified Data.List as List
import Data.Void
import GHC.Generics
import Prelude hiding (lookup, zip, zipWith)
type family Key (f :: * -> *)
type instance Key (Cofree f) = Seq (Key f)
type instance Key (Free f) = Seq (Key f)
type instance Key Tree = Seq Int
type instance Key NonEmpty = Int
type instance Key U1 = Void
type instance Key V1 = Void
type instance Key Par1 = ()
type instance Key Proxy = Void
type instance Key (Tagged a) = ()
type instance Key (Const e) = Void
type instance Key (Constant e) = Void
type instance Key (g :.: f) = (Key g, Key f)
type instance Key (f :*: g) = Either (Key f) (Key g)
type instance Key (f :+: g) = Either (Key f) (Key g)
type instance Key (Rec1 f) = Key f
type instance Key (M1 i c f) = Key f
type instance Key (K1 i c) = Void
class Functor f => Keyed f where
mapWithKey :: (Key f -> a -> b) -> f a -> f b
instance Keyed f => Keyed (Free f) where
mapWithKey :: (Key (Free f) -> a -> b) -> Free f a -> Free f b
mapWithKey f :: Key (Free f) -> a -> b
f (Pure a :: a
a) = b -> Free f b
forall (f :: * -> *) a. a -> Free f a
Pure (Key (Free f) -> a -> b
f Key (Free f)
forall a. Seq a
Seq.empty a
a)
mapWithKey f :: Key (Free f) -> a -> b
f (Free as :: f (Free f a)
as) = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free ((Key f -> Free f a -> Free f b) -> f (Free f a) -> f (Free f b)
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey ((Seq (Key f) -> a -> b) -> Free f a -> Free f b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey ((Seq (Key f) -> a -> b) -> Free f a -> Free f b)
-> (Key f -> Seq (Key f) -> a -> b)
-> Key f
-> Free f a
-> Free f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> b)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> b
Key (Free f) -> a -> b
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> b)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Free f a)
as)
instance Keyed f => Keyed (Cofree f) where
mapWithKey :: (Key (Cofree f) -> a -> b) -> Cofree f a -> Cofree f b
mapWithKey f :: Key (Cofree f) -> a -> b
f (a :: a
a :< as :: f (Cofree f a)
as) = Key (Cofree f) -> a -> b
f Key (Cofree f)
forall a. Seq a
Seq.empty a
a b -> f (Cofree f b) -> Cofree f b
forall (f :: * -> *) a. a -> f (Cofree f a) -> Cofree f a
:< (Key f -> Cofree f a -> Cofree f b)
-> f (Cofree f a) -> f (Cofree f b)
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey ((Seq (Key f) -> a -> b) -> Cofree f a -> Cofree f b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey ((Seq (Key f) -> a -> b) -> Cofree f a -> Cofree f b)
-> (Key f -> Seq (Key f) -> a -> b)
-> Key f
-> Cofree f a
-> Cofree f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> b)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> b
Key (Cofree f) -> a -> b
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> b)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Cofree f a)
as
instance Keyed Tree where
mapWithKey :: (Key Tree -> a -> b) -> Tree a -> Tree b
mapWithKey f :: Key Tree -> a -> b
f (Node a :: a
a as :: Forest a
as) = b -> Forest b -> Tree b
forall a. a -> Forest a -> Tree a
Node (Key Tree -> a -> b
f Key Tree
forall a. Seq a
Seq.empty a
a) ((Key [] -> Tree a -> Tree b) -> Forest a -> Forest b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey ((Seq Int -> a -> b) -> Tree a -> Tree b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey ((Seq Int -> a -> b) -> Tree a -> Tree b)
-> (Int -> Seq Int -> a -> b) -> Int -> Tree a -> Tree b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> a -> b) -> (Seq Int -> Seq Int) -> Seq Int -> a -> b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq Int -> a -> b
Key Tree -> a -> b
f ((Seq Int -> Seq Int) -> Seq Int -> a -> b)
-> (Int -> Seq Int -> Seq Int) -> Int -> Seq Int -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> Int -> Seq Int) -> Int -> Seq Int -> Seq Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq Int -> Int -> Seq Int
forall a. Seq a -> a -> Seq a
(|>)) Forest a
as)
instance Keyed U1 where
mapWithKey :: (Key U1 -> a -> b) -> U1 a -> U1 b
mapWithKey _ U1 = U1 b
forall k (p :: k). U1 p
U1
instance Keyed V1 where
mapWithKey :: (Key V1 -> a -> b) -> V1 a -> V1 b
mapWithKey _ v :: V1 a
v = V1 a
v V1 a -> V1 b -> V1 b
forall a b. a -> b -> b
`seq` V1 b
forall a. HasCallStack => a
undefined
instance Keyed Par1 where
mapWithKey :: (Key Par1 -> a -> b) -> Par1 a -> Par1 b
mapWithKey q :: Key Par1 -> a -> b
q = (a -> b) -> Par1 a -> Par1 b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Key Par1 -> a -> b
q ())
instance Keyed (K1 i c) where
mapWithKey :: (Key (K1 i c) -> a -> b) -> K1 i c a -> K1 i c b
mapWithKey _ (K1 c :: c
c) = c -> K1 i c b
forall k i c (p :: k). c -> K1 i c p
K1 c
c
instance Keyed (Tagged a) where
mapWithKey :: (Key (Tagged a) -> a -> b) -> Tagged a a -> Tagged a b
mapWithKey q :: Key (Tagged a) -> a -> b
q (Tagged a :: a
a) = b -> Tagged a b
forall k (s :: k) b. b -> Tagged s b
Tagged (Key (Tagged a) -> a -> b
q () a
a)
instance Keyed Proxy where
mapWithKey :: (Key Proxy -> a -> b) -> Proxy a -> Proxy b
mapWithKey _ Proxy = Proxy b
forall k (t :: k). Proxy t
Proxy
instance Keyed (Const e) where
mapWithKey :: (Key (Const e) -> a -> b) -> Const e a -> Const e b
mapWithKey _ (Const a :: e
a) = e -> Const e b
forall k a (b :: k). a -> Const a b
Const e
a
instance Keyed (Constant e) where
mapWithKey :: (Key (Constant e) -> a -> b) -> Constant e a -> Constant e b
mapWithKey _ (Constant a :: e
a) = e -> Constant e b
forall k a (b :: k). a -> Constant a b
Constant e
a
instance Keyed f => Keyed (M1 i c f) where
mapWithKey :: (Key (M1 i c f) -> a -> b) -> M1 i c f a -> M1 i c f b
mapWithKey q :: Key (M1 i c f) -> a -> b
q (M1 f :: f a
f) = f b -> M1 i c f b
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 ((Key f -> a -> b) -> f a -> f b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey Key f -> a -> b
Key (M1 i c f) -> a -> b
q f a
f)
instance Keyed f => Keyed (Rec1 f) where
mapWithKey :: (Key (Rec1 f) -> a -> b) -> Rec1 f a -> Rec1 f b
mapWithKey q :: Key (Rec1 f) -> a -> b
q (Rec1 f :: f a
f) = f b -> Rec1 f b
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 ((Key f -> a -> b) -> f a -> f b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey Key f -> a -> b
Key (Rec1 f) -> a -> b
q f a
f)
instance (Keyed g, Keyed f) => Keyed (f :*: g) where
mapWithKey :: (Key (f :*: g) -> a -> b) -> (:*:) f g a -> (:*:) f g b
mapWithKey q :: Key (f :*: g) -> a -> b
q (fa :: f a
fa :*: ga :: g a
ga) = (Key f -> a -> b) -> f a -> f b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (Either (Key f) (Key g) -> a -> b
Key (f :*: g) -> a -> b
q (Either (Key f) (Key g) -> a -> b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
fa f b -> g b -> (:*:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (Key g -> a -> b) -> g a -> g b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (Either (Key f) (Key g) -> a -> b
Key (f :*: g) -> a -> b
q (Either (Key f) (Key g) -> a -> b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
ga
instance (Keyed g, Keyed f) => Keyed (f :+: g) where
mapWithKey :: (Key (f :+: g) -> a -> b) -> (:+:) f g a -> (:+:) f g b
mapWithKey q :: Key (f :+: g) -> a -> b
q (L1 fa :: f a
fa) = f b -> (:+:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1 ((Key f -> a -> b) -> f a -> f b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (Either (Key f) (Key g) -> a -> b
Key (f :+: g) -> a -> b
q (Either (Key f) (Key g) -> a -> b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
fa)
mapWithKey q :: Key (f :+: g) -> a -> b
q (R1 ga :: g a
ga) = g b -> (:+:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1 ((Key g -> a -> b) -> g a -> g b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (Either (Key f) (Key g) -> a -> b
Key (f :+: g) -> a -> b
q (Either (Key f) (Key g) -> a -> b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
ga)
instance (Keyed g, Keyed f) => Keyed (g :.: f) where
mapWithKey :: (Key (g :.: f) -> a -> b) -> (:.:) g f a -> (:.:) g f b
mapWithKey q :: Key (g :.: f) -> a -> b
q = (g (f a) -> g (f b)) -> (:.:) g f a -> (:.:) g f b
forall (g :: * -> *) (f :: * -> *) a (g' :: * -> *) (f' :: * -> *)
a'.
(g (f a) -> g' (f' a')) -> (:.:) g f a -> (:.:) g' f' a'
inComp ((Key g -> f a -> f b) -> g (f a) -> g (f b)
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey ((Key f -> a -> b) -> f a -> f b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey ((Key f -> a -> b) -> f a -> f b)
-> (Key g -> Key f -> a -> b) -> Key g -> f a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Key g, Key f) -> a -> b)
-> (Key f -> (Key g, Key f)) -> Key f -> a -> b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Key g, Key f) -> a -> b
Key (g :.: f) -> a -> b
q ((Key f -> (Key g, Key f)) -> Key f -> a -> b)
-> (Key g -> Key f -> (Key g, Key f)) -> Key g -> Key f -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,)))
#if 0
mapWithKey :: (Key (g :.: f) -> a -> b) -> (g :.: f) a -> (g :.: f) b
:: ((Key g, Key f) -> a -> b) -> (g :.: f) a -> (g :.: f) b
mapWithKey q
= \ (Comp1 gfa) -> Comp1 (mapWithKey (\ gk -> mapWithKey (\ fk a -> q (gk, fk) a)) gfa)
= inComp $ mapWithKey (\ gk -> mapWithKey (\ fk a -> q (gk, fk) a))
= inComp $ mapWithKey (\ gk -> mapWithKey (\ fk -> q (gk, fk)))
= inComp $ mapWithKey (\ gk -> mapWithKey (q . (gk,)))
= inComp $ mapWithKey (\ gk -> mapWithKey . (q .) $ (gk,))
= inComp $ mapWithKey (\ gk -> mapWithKey . (q .) $ (,) gk)
= inComp (mapWithKey (mapWithKey . fmap q . (,)))
q :: ((Key g, Key f) -> a -> b)
gfa :: g (f a)
gk :: Key g
fk :: Key f
#endif
class Functor f => Zip f where
zipWith :: (a -> b -> c) -> f a -> f b -> f c
zipWith f :: a -> b -> c
f a :: f a
a b :: f b
b = (a -> b -> c) -> (a, b) -> c
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry a -> b -> c
f ((a, b) -> c) -> f (a, b) -> f c
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a -> f b -> f (a, b)
forall (f :: * -> *) a b. Zip f => f a -> f b -> f (a, b)
zip f a
a f b
b
zip :: f a -> f b -> f (a, b)
zip = (a -> b -> (a, b)) -> f a -> f b -> f (a, b)
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith (,)
zap :: f (a -> b) -> f a -> f b
zap = ((a -> b) -> a -> b) -> f (a -> b) -> f a -> f b
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith (a -> b) -> a -> b
forall a. a -> a
id
#if __GLASGOW_HASKELL__ >= 708
{-# MINIMAL zipWith | zip #-}
#endif
instance Zip f => Zip (Cofree f) where
zipWith :: (a -> b -> c) -> Cofree f a -> Cofree f b -> Cofree f c
zipWith f :: a -> b -> c
f (a :: a
a :< as :: f (Cofree f a)
as) (b :: b
b :< bs :: f (Cofree f b)
bs) = a -> b -> c
f a
a b
b c -> f (Cofree f c) -> Cofree f c
forall (f :: * -> *) a. a -> f (Cofree f a) -> Cofree f a
:< (Cofree f a -> Cofree f b -> Cofree f c)
-> f (Cofree f a) -> f (Cofree f b) -> f (Cofree f c)
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith ((a -> b -> c) -> Cofree f a -> Cofree f b -> Cofree f c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
f) f (Cofree f a)
as f (Cofree f b)
bs
instance Zip Tree where
zipWith :: (a -> b -> c) -> Tree a -> Tree b -> Tree c
zipWith f :: a -> b -> c
f (Node a :: a
a as :: Forest a
as) (Node b :: b
b bs :: Forest b
bs) = c -> Forest c -> Tree c
forall a. a -> Forest a -> Tree a
Node (a -> b -> c
f a
a b
b) ((Tree a -> Tree b -> Tree c) -> Forest a -> Forest b -> Forest c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith ((a -> b -> c) -> Tree a -> Tree b -> Tree c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
f) Forest a
as Forest b
bs)
instance Zip Proxy where
zipWith :: (a -> b -> c) -> Proxy a -> Proxy b -> Proxy c
zipWith = (a -> b -> c) -> Proxy a -> Proxy b -> Proxy c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2
instance Zip (Tagged a) where
zipWith :: (a -> b -> c) -> Tagged a a -> Tagged a b -> Tagged a c
zipWith = (a -> b -> c) -> Tagged a a -> Tagged a b -> Tagged a c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2
instance Zip U1 where
zipWith :: (a -> b -> c) -> U1 a -> U1 b -> U1 c
zipWith = (a -> b -> c) -> U1 a -> U1 b -> U1 c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2
instance Zip V1 where
zipWith :: (a -> b -> c) -> V1 a -> V1 b -> V1 c
zipWith _ v :: V1 a
v = V1 a
v V1 a -> (V1 b -> V1 c) -> V1 b -> V1 c
forall a b. a -> b -> b
`seq` V1 b -> V1 c
forall a. HasCallStack => a
undefined
instance Zip Par1 where
zipWith :: (a -> b -> c) -> Par1 a -> Par1 b -> Par1 c
zipWith = (a -> b -> c) -> Par1 a -> Par1 b -> Par1 c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2
instance (Zip f, Zip g) => Zip (f :*: g) where
zipWith :: (a -> b -> c) -> (:*:) f g a -> (:*:) f g b -> (:*:) f g c
zipWith h :: a -> b -> c
h (fa :: f a
fa :*: ga :: g a
ga) (fa' :: f b
fa' :*: ga' :: g b
ga') =
(a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
h f a
fa f b
fa' f c -> g c -> (:*:) f g c
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
h g a
ga g b
ga'
instance (Zip f, Zip g) => Zip (g :.: f) where
zipWith :: (a -> b -> c) -> (:.:) g f a -> (:.:) g f b -> (:.:) g f c
zipWith = (g (f a) -> g (f b) -> g (f c))
-> (:.:) g f a -> (:.:) g f b -> (:.:) g f c
forall (g :: * -> *) (f :: * -> *) a (g' :: * -> *) (f' :: * -> *)
a' (g'' :: * -> *) (f'' :: * -> *) a''.
(g (f a) -> g' (f' a') -> g'' (f'' a''))
-> (:.:) g f a -> (:.:) g' f' a' -> (:.:) g'' f'' a''
inComp2 ((g (f a) -> g (f b) -> g (f c))
-> (:.:) g f a -> (:.:) g f b -> (:.:) g f c)
-> ((a -> b -> c) -> g (f a) -> g (f b) -> g (f c))
-> (a -> b -> c)
-> (:.:) g f a
-> (:.:) g f b
-> (:.:) g f c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (f a -> f b -> f c) -> g (f a) -> g (f b) -> g (f c)
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith ((f a -> f b -> f c) -> g (f a) -> g (f b) -> g (f c))
-> ((a -> b -> c) -> f a -> f b -> f c)
-> (a -> b -> c)
-> g (f a)
-> g (f b)
-> g (f c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith
instance Zip f => Zip (Rec1 f) where
zipWith :: (a -> b -> c) -> Rec1 f a -> Rec1 f b -> Rec1 f c
zipWith f :: a -> b -> c
f (Rec1 a :: f a
a) (Rec1 b :: f b
b) = f c -> Rec1 f c
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 ((a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
f f a
a f b
b)
instance Zip f => Zip (M1 i c f) where
zipWith :: (a -> b -> c) -> M1 i c f a -> M1 i c f b -> M1 i c f c
zipWith f :: a -> b -> c
f (M1 a :: f a
a) (M1 b :: f b
b) = f c -> M1 i c f c
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 ((a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
f f a
a f b
b)
(<--) :: (b -> b') -> (a' -> a) -> ((a -> b) -> (a' -> b'))
(h :: b -> b'
h <-- :: (b -> b') -> (a' -> a) -> (a -> b) -> a' -> b'
<-- f :: a' -> a
f) g :: a -> b
g = b -> b'
h (b -> b') -> (a' -> b) -> a' -> b'
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
g (a -> b) -> (a' -> a) -> a' -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a' -> a
f
inComp :: (g (f a) -> g' (f' a')) -> ((g :.: f) a -> (g' :.: f') a')
inComp :: (g (f a) -> g' (f' a')) -> (:.:) g f a -> (:.:) g' f' a'
inComp = g' (f' a') -> (:.:) g' f' a'
forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 (g' (f' a') -> (:.:) g' f' a')
-> ((:.:) g f a -> g (f a))
-> (g (f a) -> g' (f' a'))
-> (:.:) g f a
-> (:.:) g' f' a'
forall b b' a' a. (b -> b') -> (a' -> a) -> (a -> b) -> a' -> b'
<-- (:.:) g f a -> g (f a)
forall k2 (f :: k2 -> *) k1 (g :: k1 -> k2) (p :: k1).
(:.:) f g p -> f (g p)
unComp1
inComp2 :: ( g (f a) -> g' (f' a') -> g'' (f'' a''))
-> ((g :.: f) a -> (g' :.: f') a' -> (g'' :.: f'') a'')
inComp2 :: (g (f a) -> g' (f' a') -> g'' (f'' a''))
-> (:.:) g f a -> (:.:) g' f' a' -> (:.:) g'' f'' a''
inComp2 = (g' (f' a') -> g'' (f'' a''))
-> (:.:) g' f' a' -> (:.:) g'' f'' a''
forall (g :: * -> *) (f :: * -> *) a (g' :: * -> *) (f' :: * -> *)
a'.
(g (f a) -> g' (f' a')) -> (:.:) g f a -> (:.:) g' f' a'
inComp ((g' (f' a') -> g'' (f'' a''))
-> (:.:) g' f' a' -> (:.:) g'' f'' a'')
-> ((:.:) g f a -> g (f a))
-> (g (f a) -> g' (f' a') -> g'' (f'' a''))
-> (:.:) g f a
-> (:.:) g' f' a'
-> (:.:) g'' f'' a''
forall b b' a' a. (b -> b') -> (a' -> a) -> (a -> b) -> a' -> b'
<-- (:.:) g f a -> g (f a)
forall k2 (f :: k2 -> *) k1 (g :: k1 -> k2) (p :: k1).
(:.:) f g p -> f (g p)
unComp1
class (Keyed f, Zip f) => ZipWithKey f where
zipWithKey :: (Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey f :: Key f -> a -> b -> c
f = f (b -> c) -> f b -> f c
forall (f :: * -> *) a b. Zip f => f (a -> b) -> f a -> f b
zap (f (b -> c) -> f b -> f c)
-> (f a -> f (b -> c)) -> f a -> f b -> f c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key f -> a -> b -> c) -> f a -> f (b -> c)
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey Key f -> a -> b -> c
f
zapWithKey :: f (Key f -> a -> b) -> f a -> f b
zapWithKey = (Key f -> (Key f -> a -> b) -> a -> b)
-> f (Key f -> a -> b) -> f a -> f b
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey (\k :: Key f
k f :: Key f -> a -> b
f -> Key f -> a -> b
f Key f
k)
instance ZipWithKey f => ZipWithKey (Cofree f) where
zipWithKey :: (Key (Cofree f) -> a -> b -> c)
-> Cofree f a -> Cofree f b -> Cofree f c
zipWithKey f :: Key (Cofree f) -> a -> b -> c
f (a :: a
a :< as :: f (Cofree f a)
as) (b :: b
b :< bs :: f (Cofree f b)
bs) = Key (Cofree f) -> a -> b -> c
f Key (Cofree f)
forall a. Seq a
Seq.empty a
a b
b c -> f (Cofree f c) -> Cofree f c
forall (f :: * -> *) a. a -> f (Cofree f a) -> Cofree f a
:< (Key f -> Cofree f a -> Cofree f b -> Cofree f c)
-> f (Cofree f a) -> f (Cofree f b) -> f (Cofree f c)
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey ((Seq (Key f) -> a -> b -> c)
-> Cofree f a -> Cofree f b -> Cofree f c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey ((Seq (Key f) -> a -> b -> c)
-> Cofree f a -> Cofree f b -> Cofree f c)
-> (Key f -> Seq (Key f) -> a -> b -> c)
-> Key f
-> Cofree f a
-> Cofree f b
-> Cofree f c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> b -> c)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> b -> c
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> b -> c
Key (Cofree f) -> a -> b -> c
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> b -> c)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> b
-> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Cofree f a)
as f (Cofree f b)
bs
instance ZipWithKey Tree where
zipWithKey :: (Key Tree -> a -> b -> c) -> Tree a -> Tree b -> Tree c
zipWithKey f :: Key Tree -> a -> b -> c
f (Node a :: a
a as :: Forest a
as) (Node b :: b
b bs :: Forest b
bs) = Key Tree -> a -> b -> c
f Key Tree
forall a. Seq a
Seq.empty a
a b
b c -> Forest c -> Tree c
forall a. a -> Forest a -> Tree a
`Node` (Key [] -> Tree a -> Tree b -> Tree c)
-> Forest a -> Forest b -> Forest c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey ((Seq Int -> a -> b -> c) -> Tree a -> Tree b -> Tree c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey ((Seq Int -> a -> b -> c) -> Tree a -> Tree b -> Tree c)
-> (Int -> Seq Int -> a -> b -> c)
-> Int
-> Tree a
-> Tree b
-> Tree c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> a -> b -> c)
-> (Seq Int -> Seq Int) -> Seq Int -> a -> b -> c
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq Int -> a -> b -> c
Key Tree -> a -> b -> c
f ((Seq Int -> Seq Int) -> Seq Int -> a -> b -> c)
-> (Int -> Seq Int -> Seq Int) -> Int -> Seq Int -> a -> b -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> Int -> Seq Int) -> Int -> Seq Int -> Seq Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq Int -> Int -> Seq Int
forall a. Seq a -> a -> Seq a
(|>)) Forest a
as Forest b
bs
instance ZipWithKey (Tagged a) where
zipWithKey :: (Key (Tagged a) -> a -> b -> c)
-> Tagged a a -> Tagged a b -> Tagged a c
zipWithKey f :: Key (Tagged a) -> a -> b -> c
f = (a -> b -> c) -> Tagged a a -> Tagged a b -> Tagged a c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith (Key (Tagged a) -> a -> b -> c
f ())
instance ZipWithKey Proxy where
zipWithKey :: (Key Proxy -> a -> b -> c) -> Proxy a -> Proxy b -> Proxy c
zipWithKey _ _ _ = Proxy c
forall k (t :: k). Proxy t
Proxy
instance ZipWithKey U1 where
zipWithKey :: (Key U1 -> a -> b -> c) -> U1 a -> U1 b -> U1 c
zipWithKey _ _ _ = U1 c
forall k (p :: k). U1 p
U1
instance ZipWithKey V1 where
zipWithKey :: (Key V1 -> a -> b -> c) -> V1 a -> V1 b -> V1 c
zipWithKey _ u :: V1 a
u v :: V1 b
v = V1 a
u V1 a -> V1 c -> V1 c
forall a b. a -> b -> b
`seq` V1 b
v V1 b -> V1 c -> V1 c
forall a b. a -> b -> b
`seq` V1 c
forall a. HasCallStack => a
undefined
instance ZipWithKey Par1 where
zipWithKey :: (Key Par1 -> a -> b -> c) -> Par1 a -> Par1 b -> Par1 c
zipWithKey f :: Key Par1 -> a -> b -> c
f (Par1 a :: a
a) (Par1 b :: b
b) = c -> Par1 c
forall p. p -> Par1 p
Par1 (Key Par1 -> a -> b -> c
f () a
a b
b)
instance ZipWithKey f => ZipWithKey (Rec1 f) where
zipWithKey :: (Key (Rec1 f) -> a -> b -> c) -> Rec1 f a -> Rec1 f b -> Rec1 f c
zipWithKey f :: Key (Rec1 f) -> a -> b -> c
f (Rec1 a :: f a
a) (Rec1 b :: f b
b) = f c -> Rec1 f c
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 ((Key f -> a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey Key f -> a -> b -> c
Key (Rec1 f) -> a -> b -> c
f f a
a f b
b)
instance ZipWithKey f => ZipWithKey (M1 i c f) where
zipWithKey :: (Key (M1 i c f) -> a -> b -> c)
-> M1 i c f a -> M1 i c f b -> M1 i c f c
zipWithKey f :: Key (M1 i c f) -> a -> b -> c
f (M1 a :: f a
a) (M1 b :: f b
b) = f c -> M1 i c f c
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 ((Key f -> a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey Key f -> a -> b -> c
Key (M1 i c f) -> a -> b -> c
f f a
a f b
b)
instance (ZipWithKey f, ZipWithKey g) => ZipWithKey (f :*: g) where
zipWithKey :: (Key (f :*: g) -> a -> b -> c)
-> (:*:) f g a -> (:*:) f g b -> (:*:) f g c
zipWithKey f :: Key (f :*: g) -> a -> b -> c
f (as :: f a
as :*: bs :: g a
bs) (cs :: f b
cs :*: ds :: g b
ds) = (Key f -> a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey (Either (Key f) (Key g) -> a -> b -> c
Key (f :*: g) -> a -> b -> c
f (Either (Key f) (Key g) -> a -> b -> c)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> b -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
as f b
cs f c -> g c -> (:*:) f g c
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (Key g -> a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey (Either (Key f) (Key g) -> a -> b -> c
Key (f :*: g) -> a -> b -> c
f (Either (Key f) (Key g) -> a -> b -> c)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> b -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
bs g b
ds
instance (ZipWithKey f, ZipWithKey g) => ZipWithKey (g :.: f) where
zipWithKey :: (Key (g :.: f) -> a -> b -> c)
-> (:.:) g f a -> (:.:) g f b -> (:.:) g f c
zipWithKey f :: Key (g :.: f) -> a -> b -> c
f (Comp1 xs :: g (f a)
xs) (Comp1 ys :: g (f b)
ys) = g (f c) -> (:.:) g f c
forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 (g (f c) -> (:.:) g f c) -> g (f c) -> (:.:) g f c
forall a b. (a -> b) -> a -> b
$ (Key g -> f a -> f b -> f c) -> g (f a) -> g (f b) -> g (f c)
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey (\a :: Key g
a -> (Key f -> a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey (\b :: Key f
b -> Key (g :.: f) -> a -> b -> c
f (Key g
a,Key f
b))) g (f a)
xs g (f b)
ys
infixl 4 <#$>
(<#$>) :: Keyed f => (Key f -> a -> b) -> f a -> f b
<#$> :: (Key f -> a -> b) -> f a -> f b
(<#$>) = (Key f -> a -> b) -> f a -> f b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey
{-# INLINE (<#$>) #-}
keyed :: Keyed f => f a -> f (Key f, a)
keyed :: f a -> f (Key f, a)
keyed = (Key f -> a -> (Key f, a)) -> f a -> f (Key f, a)
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (,)
{-# INLINE keyed #-}
class Lookup f => Indexable f where
index :: f a -> Key f -> a
instance Indexable f => Indexable (Cofree f) where
index :: Cofree f a -> Key (Cofree f) -> a
index (a :: a
a :< as :: f (Cofree f a)
as) key :: Key (Cofree f)
key = case Seq (Key f) -> ViewL (Key f)
forall a. Seq a -> ViewL a
viewl Seq (Key f)
Key (Cofree f)
key of
EmptyL -> a
a
k :: Key f
k Seq.:< ks :: Seq (Key f)
ks -> Cofree f a -> Key (Cofree f) -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index (f (Cofree f a) -> Key f -> Cofree f a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index f (Cofree f a)
as Key f
k) Seq (Key f)
Key (Cofree f)
ks
instance Indexable (Tagged a) where
index :: Tagged a a -> Key (Tagged a) -> a
index (Tagged a :: a
a) () = a
a
instance Indexable Proxy where
index :: Proxy a -> Key Proxy -> a
index Proxy = Key Proxy -> a
forall a. Void -> a
absurd
instance Indexable (Const e) where
index :: Const e a -> Key (Const e) -> a
index _ = Key (Const e) -> a
forall a. Void -> a
absurd
instance Indexable (Constant e) where
index :: Constant e a -> Key (Constant e) -> a
index _ = Key (Constant e) -> a
forall a. Void -> a
absurd
instance Indexable Tree where
index :: Tree a -> Key Tree -> a
index (Node a :: a
a as :: Forest a
as) key :: Key Tree
key = case Seq Int -> ViewL Int
forall a. Seq a -> ViewL a
viewl Seq Int
Key Tree
key of
EmptyL -> a
a
k :: Int
k Seq.:< ks :: Seq Int
ks -> Tree a -> Key Tree -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index (Forest a -> Key [] -> Tree a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index Forest a
as Int
Key []
k) Seq Int
Key Tree
ks
instance Indexable U1 where
index :: U1 a -> Key U1 -> a
index U1 = Key U1 -> a
forall a. Void -> a
absurd
instance Indexable Par1 where
index :: Par1 a -> Key Par1 -> a
index (Par1 a :: a
a) () = a
a
instance Indexable f => Indexable (Rec1 f) where
index :: Rec1 f a -> Key (Rec1 f) -> a
index (Rec1 f :: f a
f) a :: Key (Rec1 f)
a = f a -> Key f -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index f a
f Key f
Key (Rec1 f)
a
instance Indexable f => Indexable (M1 i c f) where
index :: M1 i c f a -> Key (M1 i c f) -> a
index (M1 f :: f a
f) a :: Key (M1 i c f)
a = f a -> Key f -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index f a
f Key f
Key (M1 i c f)
a
instance Indexable (K1 i c) where
index :: K1 i c a -> Key (K1 i c) -> a
index _ = Key (K1 i c) -> a
forall a. Void -> a
absurd
instance (Indexable g, Indexable f) =>
Indexable (f :*: g) where
index :: (:*:) f g a -> Key (f :*: g) -> a
index (fa :: f a
fa :*: _) (Left fk) = f a
fa f a -> Key f -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
! Key f
fk
index (_ :*: ga :: g a
ga) (Right gk) = g a
ga g a -> Key g -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
! Key g
gk
instance (Indexable g, Indexable f) =>
Indexable (g :.: f) where
index :: (:.:) g f a -> Key (g :.: f) -> a
index (Comp1 gfa :: g (f a)
gfa) (gk,fk) = g (f a)
gfa g (f a) -> Key g -> f a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
! Key g
gk f a -> Key f -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
! Key f
fk
(!) :: Indexable f => f a -> Key f -> a
(!) = f a -> Key f -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index
class Lookup f where
lookup :: Key f -> f a -> Maybe a
instance Lookup f => Lookup (Cofree f) where
lookup :: Key (Cofree f) -> Cofree f a -> Maybe a
lookup key :: Key (Cofree f)
key (a :: a
a :< as :: f (Cofree f a)
as) = case Seq (Key f) -> ViewL (Key f)
forall a. Seq a -> ViewL a
viewl Seq (Key f)
Key (Cofree f)
key of
EmptyL -> a -> Maybe a
forall a. a -> Maybe a
Just a
a
k :: Key f
k Seq.:< ks :: Seq (Key f)
ks -> Key f -> f (Cofree f a) -> Maybe (Cofree f a)
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key f
k f (Cofree f a)
as Maybe (Cofree f a) -> (Cofree f a -> Maybe a) -> Maybe a
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Key (Cofree f) -> Cofree f a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Seq (Key f)
Key (Cofree f)
ks
instance Lookup (Tagged a) where
lookup :: Key (Tagged a) -> Tagged a a -> Maybe a
lookup () (Tagged a :: a
a) = a -> Maybe a
forall a. a -> Maybe a
Just a
a
instance Lookup Proxy where
lookup :: Key Proxy -> Proxy a -> Maybe a
lookup _ _ = Maybe a
forall a. Maybe a
Nothing
instance Lookup (Const e) where
lookup :: Key (Const e) -> Const e a -> Maybe a
lookup _ _ = Maybe a
forall a. Maybe a
Nothing
instance Lookup (Constant e) where
lookup :: Key (Constant e) -> Constant e a -> Maybe a
lookup _ _ = Maybe a
forall a. Maybe a
Nothing
instance Lookup Tree where
lookup :: Key Tree -> Tree a -> Maybe a
lookup key :: Key Tree
key (Node a :: a
a as :: Forest a
as) = case Seq Int -> ViewL Int
forall a. Seq a -> ViewL a
viewl Seq Int
Key Tree
key of
EmptyL -> a -> Maybe a
forall a. a -> Maybe a
Just a
a
k :: Int
k Seq.:< ks :: Seq Int
ks -> Key [] -> Forest a -> Maybe (Tree a)
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Int
Key []
k Forest a
as Maybe (Tree a) -> (Tree a -> Maybe a) -> Maybe a
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Key Tree -> Tree a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Seq Int
Key Tree
ks
instance Lookup f => Lookup (Free f) where
lookup :: Key (Free f) -> Free f a -> Maybe a
lookup key :: Key (Free f)
key (Pure a :: a
a)
| Seq (Key f) -> Bool
forall a. Seq a -> Bool
Seq.null Seq (Key f)
Key (Free f)
key = a -> Maybe a
forall a. a -> Maybe a
Just a
a
| Bool
otherwise = Maybe a
forall a. Maybe a
Nothing
lookup key :: Key (Free f)
key (Free as :: f (Free f a)
as) = case Seq (Key f) -> ViewL (Key f)
forall a. Seq a -> ViewL a
viewl Seq (Key f)
Key (Free f)
key of
k :: Key f
k Seq.:< ks :: Seq (Key f)
ks -> Key f -> f (Free f a) -> Maybe (Free f a)
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key f
k f (Free f a)
as Maybe (Free f a) -> (Free f a -> Maybe a) -> Maybe a
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Key (Free f) -> Free f a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Seq (Key f)
Key (Free f)
ks
_ -> Maybe a
forall a. Maybe a
Nothing
instance Lookup U1 where
lookup :: Key U1 -> U1 a -> Maybe a
lookup _ _ = Maybe a
forall a. Maybe a
Nothing
instance Lookup Par1 where
lookup :: Key Par1 -> Par1 a -> Maybe a
lookup = Key Par1 -> Par1 a -> Maybe a
forall (f :: * -> *) a. Indexable f => Key f -> f a -> Maybe a
lookupDefault
instance Lookup f => Lookup (Rec1 f) where
lookup :: Key (Rec1 f) -> Rec1 f a -> Maybe a
lookup k :: Key (Rec1 f)
k (Rec1 f :: f a
f) = Key f -> f a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key f
Key (Rec1 f)
k f a
f
instance Lookup f => Lookup (M1 i c f) where
lookup :: Key (M1 i c f) -> M1 i c f a -> Maybe a
lookup k :: Key (M1 i c f)
k (M1 f :: f a
f) = Key f -> f a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key f
Key (M1 i c f)
k f a
f
instance Lookup (K1 i c) where
lookup :: Key (K1 i c) -> K1 i c a -> Maybe a
lookup _ _ = Maybe a
forall a. Maybe a
Nothing
instance (Indexable g, Indexable f) => Lookup (f :*: g) where
lookup :: Key (f :*: g) -> (:*:) f g a -> Maybe a
lookup = Key (f :*: g) -> (:*:) f g a -> Maybe a
forall (f :: * -> *) a. Indexable f => Key f -> f a -> Maybe a
lookupDefault
instance (Indexable g, Indexable f) => Lookup (g :.: f) where
lookup :: Key (g :.: f) -> (:.:) g f a -> Maybe a
lookup = Key (g :.: f) -> (:.:) g f a -> Maybe a
forall (f :: * -> *) a. Indexable f => Key f -> f a -> Maybe a
lookupDefault
lookupDefault :: Indexable f => Key f -> f a -> Maybe a
lookupDefault :: Key f -> f a -> Maybe a
lookupDefault k :: Key f
k t :: f a
t = a -> Maybe a
forall a. a -> Maybe a
Just (f a -> Key f -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index f a
t Key f
k)
class Functor f => Adjustable f where
adjust :: (a -> a) -> Key f -> f a -> f a
replace :: Key f -> a -> f a -> f a
replace k :: Key f
k v :: a
v = (a -> a) -> Key f -> f a -> f a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust (a -> a -> a
forall a b. a -> b -> a
const a
v) Key f
k
instance Adjustable f => Adjustable (Free f) where
adjust :: (a -> a) -> Key (Free f) -> Free f a -> Free f a
adjust f :: a -> a
f key :: Key (Free f)
key as :: Free f a
as@(Pure a :: a
a)
| Seq (Key f) -> Bool
forall a. Seq a -> Bool
Seq.null Seq (Key f)
Key (Free f)
key = a -> Free f a
forall (f :: * -> *) a. a -> Free f a
Pure (a -> Free f a) -> a -> Free f a
forall a b. (a -> b) -> a -> b
$ a -> a
f a
a
| Bool
otherwise = Free f a
as
adjust f :: a -> a
f key :: Key (Free f)
key aas :: Free f a
aas@(Free as :: f (Free f a)
as) = case Seq (Key f) -> ViewL (Key f)
forall a. Seq a -> ViewL a
viewl Seq (Key f)
Key (Free f)
key of
k :: Key f
k Seq.:< ks :: Seq (Key f)
ks -> f (Free f a) -> Free f a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f a) -> Free f a) -> f (Free f a) -> Free f a
forall a b. (a -> b) -> a -> b
$ (Free f a -> Free f a) -> Key f -> f (Free f a) -> f (Free f a)
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust ((a -> a) -> Key (Free f) -> Free f a -> Free f a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Seq (Key f)
Key (Free f)
ks) Key f
k f (Free f a)
as
_ -> Free f a
aas
instance Adjustable f => Adjustable (Cofree f) where
adjust :: (a -> a) -> Key (Cofree f) -> Cofree f a -> Cofree f a
adjust f :: a -> a
f key :: Key (Cofree f)
key (a :: a
a :< as :: f (Cofree f a)
as) = case Seq (Key f) -> ViewL (Key f)
forall a. Seq a -> ViewL a
viewl Seq (Key f)
Key (Cofree f)
key of
k :: Key f
k Seq.:< ks :: Seq (Key f)
ks -> a
a a -> f (Cofree f a) -> Cofree f a
forall (f :: * -> *) a. a -> f (Cofree f a) -> Cofree f a
:< (Cofree f a -> Cofree f a)
-> Key f -> f (Cofree f a) -> f (Cofree f a)
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust ((a -> a) -> Key (Cofree f) -> Cofree f a -> Cofree f a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Seq (Key f)
Key (Cofree f)
ks) Key f
k f (Cofree f a)
as
_ -> a -> a
f a
a a -> f (Cofree f a) -> Cofree f a
forall (f :: * -> *) a. a -> f (Cofree f a) -> Cofree f a
:< f (Cofree f a)
as
instance Adjustable Tree where
adjust :: (a -> a) -> Key Tree -> Tree a -> Tree a
adjust f :: a -> a
f key :: Key Tree
key (Node a :: a
a as :: Forest a
as) = case Seq Int -> ViewL Int
forall a. Seq a -> ViewL a
viewl Seq Int
Key Tree
key of
k :: Int
k Seq.:< ks :: Seq Int
ks -> a
a a -> Forest a -> Tree a
forall a. a -> Forest a -> Tree a
`Node` (Tree a -> Tree a) -> Key [] -> Forest a -> Forest a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust ((a -> a) -> Key Tree -> Tree a -> Tree a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Seq Int
Key Tree
ks) Int
Key []
k Forest a
as
_ -> a -> a
f a
a a -> Forest a -> Tree a
forall a. a -> Forest a -> Tree a
`Node` Forest a
as
instance Adjustable (Tagged a) where
adjust :: (a -> a) -> Key (Tagged a) -> Tagged a a -> Tagged a a
adjust f :: a -> a
f _ (Tagged a :: a
a) = a -> Tagged a a
forall k (s :: k) b. b -> Tagged s b
Tagged (a -> a
f a
a)
replace :: Key (Tagged a) -> a -> Tagged a a -> Tagged a a
replace _ a :: a
a _ = a -> Tagged a a
forall k (s :: k) b. b -> Tagged s b
Tagged a
a
instance Adjustable Proxy where
adjust :: (a -> a) -> Key Proxy -> Proxy a -> Proxy a
adjust _ _ _ = Proxy a
forall k (t :: k). Proxy t
Proxy
replace :: Key Proxy -> a -> Proxy a -> Proxy a
replace _ _ _ = Proxy a
forall k (t :: k). Proxy t
Proxy
instance Adjustable (Const e) where
adjust :: (a -> a) -> Key (Const e) -> Const e a -> Const e a
adjust _ _ x :: Const e a
x = Const e a
x
replace :: Key (Const e) -> a -> Const e a -> Const e a
replace _ _ x :: Const e a
x = Const e a
x
instance Adjustable (Constant e) where
adjust :: (a -> a) -> Key (Constant e) -> Constant e a -> Constant e a
adjust _ _ x :: Constant e a
x = Constant e a
x
replace :: Key (Constant e) -> a -> Constant e a -> Constant e a
replace _ _ x :: Constant e a
x = Constant e a
x
instance Adjustable U1 where
adjust :: (a -> a) -> Key U1 -> U1 a -> U1 a
adjust _ _ _ = U1 a
forall k (p :: k). U1 p
U1
replace :: Key U1 -> a -> U1 a -> U1 a
replace _ _ _ = U1 a
forall k (p :: k). U1 p
U1
instance Adjustable Par1 where
adjust :: (a -> a) -> Key Par1 -> Par1 a -> Par1 a
adjust h :: a -> a
h () = (a -> a) -> Par1 a -> Par1 a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
h
replace :: Key Par1 -> a -> Par1 a -> Par1 a
replace _ a :: a
a _ = a -> Par1 a
forall p. p -> Par1 p
Par1 a
a
instance Adjustable f => Adjustable (Rec1 f) where
adjust :: (a -> a) -> Key (Rec1 f) -> Rec1 f a -> Rec1 f a
adjust f :: a -> a
f k :: Key (Rec1 f)
k (Rec1 a :: f a
a) = f a -> Rec1 f a
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 ((a -> a) -> Key f -> f a -> f a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Key f
Key (Rec1 f)
k f a
a)
replace :: Key (Rec1 f) -> a -> Rec1 f a -> Rec1 f a
replace k :: Key (Rec1 f)
k a :: a
a (Rec1 b :: f a
b) = f a -> Rec1 f a
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 (Key f -> a -> f a -> f a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key f
Key (Rec1 f)
k a
a f a
b)
instance Adjustable f => Adjustable (M1 i c f) where
adjust :: (a -> a) -> Key (M1 i c f) -> M1 i c f a -> M1 i c f a
adjust f :: a -> a
f k :: Key (M1 i c f)
k (M1 a :: f a
a) = f a -> M1 i c f a
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 ((a -> a) -> Key f -> f a -> f a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Key f
Key (M1 i c f)
k f a
a)
replace :: Key (M1 i c f) -> a -> M1 i c f a -> M1 i c f a
replace k :: Key (M1 i c f)
k a :: a
a (M1 b :: f a
b) = f a -> M1 i c f a
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 (Key f -> a -> f a -> f a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key f
Key (M1 i c f)
k a
a f a
b)
instance Adjustable (K1 i c) where
adjust :: (a -> a) -> Key (K1 i c) -> K1 i c a -> K1 i c a
adjust _ _ x :: K1 i c a
x = K1 i c a
x
replace :: Key (K1 i c) -> a -> K1 i c a -> K1 i c a
replace _ _ x :: K1 i c a
x = K1 i c a
x
instance (Adjustable f, Adjustable g) => Adjustable (f :+: g) where
adjust :: (a -> a) -> Key (f :+: g) -> (:+:) f g a -> (:+:) f g a
adjust h :: a -> a
h (Left a) (L1 fa :: f a
fa) = f a -> (:+:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1 ((a -> a) -> Key f -> f a -> f a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
h Key f
a f a
fa)
adjust h :: a -> a
h (Right b) (R1 fb :: g a
fb) = g a -> (:+:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1 ((a -> a) -> Key g -> g a -> g a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
h Key g
b g a
fb)
adjust _ _ x :: (:+:) f g a
x = (:+:) f g a
x
replace :: Key (f :+: g) -> a -> (:+:) f g a -> (:+:) f g a
replace (Left a) v :: a
v (L1 fa :: f a
fa) = f a -> (:+:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1 (Key f -> a -> f a -> f a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key f
a a
v f a
fa)
replace (Right b) v :: a
v (R1 fb :: g a
fb) = g a -> (:+:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1 (Key g -> a -> g a -> g a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key g
b a
v g a
fb)
replace _ _ x :: (:+:) f g a
x = (:+:) f g a
x
instance (Adjustable f, Adjustable g) => Adjustable (f :*: g) where
adjust :: (a -> a) -> Key (f :*: g) -> (:*:) f g a -> (:*:) f g a
adjust h :: a -> a
h (Left fk) (fa :: f a
fa :*: ga :: g a
ga) = (a -> a) -> Key f -> f a -> f a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
h Key f
fk f a
fa f a -> g a -> (:*:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: g a
ga
adjust h :: a -> a
h (Right gk) (fa :: f a
fa :*: ga :: g a
ga) = f a
fa f a -> g a -> (:*:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (a -> a) -> Key g -> g a -> g a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
h Key g
gk g a
ga
replace :: Key (f :*: g) -> a -> (:*:) f g a -> (:*:) f g a
replace (Left fk) a :: a
a (fa :: f a
fa :*: ga :: g a
ga) = Key f -> a -> f a -> f a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key f
fk a
a f a
fa f a -> g a -> (:*:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: g a
ga
replace (Right gk) a :: a
a (fa :: f a
fa :*: ga :: g a
ga) = f a
fa f a -> g a -> (:*:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: Key g -> a -> g a -> g a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key g
gk a
a g a
ga
instance (Adjustable f, Adjustable g) => Adjustable (g :.: f) where
adjust :: (a -> a) -> Key (g :.: f) -> (:.:) g f a -> (:.:) g f a
adjust h :: a -> a
h (gk,fk) = (g (f a) -> g (f a)) -> (:.:) g f a -> (:.:) g f a
forall (g :: * -> *) (f :: * -> *) a (g' :: * -> *) (f' :: * -> *)
a'.
(g (f a) -> g' (f' a')) -> (:.:) g f a -> (:.:) g' f' a'
inComp ((f a -> f a) -> Key g -> g (f a) -> g (f a)
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust ((a -> a) -> Key f -> f a -> f a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
h Key f
fk) Key g
gk)
replace :: Key (g :.: f) -> a -> (:.:) g f a -> (:.:) g f a
replace (gk,fk) a :: a
a = (g (f a) -> g (f a)) -> (:.:) g f a -> (:.:) g f a
forall (g :: * -> *) (f :: * -> *) a (g' :: * -> *) (f' :: * -> *)
a'.
(g (f a) -> g' (f' a')) -> (:.:) g f a -> (:.:) g' f' a'
inComp ((f a -> f a) -> Key g -> g (f a) -> g (f a)
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust (Key f -> a -> f a -> f a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key f
fk a
a) Key g
gk)
class Foldable t => FoldableWithKey t where
toKeyedList :: t a -> [(Key t, a)]
toKeyedList = (Key t -> a -> [(Key t, a)] -> [(Key t, a)])
-> [(Key t, a)] -> t a -> [(Key t, a)]
forall (t :: * -> *) a b.
FoldableWithKey t =>
(Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey (\k :: Key t
k v :: a
v t :: [(Key t, a)]
t -> (Key t
k,a
v)(Key t, a) -> [(Key t, a)] -> [(Key t, a)]
forall a. a -> [a] -> [a]
:[(Key t, a)]
t) []
foldMapWithKey :: Monoid m => (Key t -> a -> m) -> t a -> m
foldMapWithKey f :: Key t -> a -> m
f = (Key t -> a -> m -> m) -> m -> t a -> m
forall (t :: * -> *) a b.
FoldableWithKey t =>
(Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey (\k :: Key t
k v :: a
v -> m -> m -> m
forall a. Monoid a => a -> a -> a
mappend (Key t -> a -> m
f Key t
k a
v)) m
forall a. Monoid a => a
mempty
foldrWithKey :: (Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey f :: Key t -> a -> b -> b
f z :: b
z t :: t a
t = Endo b -> b -> b
forall a. Endo a -> a -> a
appEndo ((Key t -> a -> Endo b) -> t a -> Endo b
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (\k :: Key t
k v :: a
v -> (b -> b) -> Endo b
forall a. (a -> a) -> Endo a
Endo (Key t -> a -> b -> b
f Key t
k a
v)) t a
t) b
z
foldlWithKey :: (b -> Key t -> a -> b) -> b -> t a -> b
foldlWithKey f :: b -> Key t -> a -> b
f z :: b
z t :: t a
t = Endo b -> b -> b
forall a. Endo a -> a -> a
appEndo (Dual (Endo b) -> Endo b
forall a. Dual a -> a
getDual ((Key t -> a -> Dual (Endo b)) -> t a -> Dual (Endo b)
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (\k :: Key t
k a :: a
a -> Endo b -> Dual (Endo b)
forall a. a -> Dual a
Dual ((b -> b) -> Endo b
forall a. (a -> a) -> Endo a
Endo (\b :: b
b -> b -> Key t -> a -> b
f b
b Key t
k a
a))) t a
t)) b
z
#if __GLASGOW_HASKELL__ >= 708
{-# MINIMAL foldMapWithKey | foldrWithKey #-}
#endif
instance FoldableWithKey f => FoldableWithKey (Free f) where
foldMapWithKey :: (Key (Free f) -> a -> m) -> Free f a -> m
foldMapWithKey f :: Key (Free f) -> a -> m
f (Pure a :: a
a) = Key (Free f) -> a -> m
f Key (Free f)
forall a. Seq a
Seq.empty a
a
foldMapWithKey f :: Key (Free f) -> a -> m
f (Free as :: f (Free f a)
as) = (Key f -> Free f a -> m) -> f (Free f a) -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey ((Seq (Key f) -> a -> m) -> Free f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey ((Seq (Key f) -> a -> m) -> Free f a -> m)
-> (Key f -> Seq (Key f) -> a -> m) -> Key f -> Free f a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> m)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> m
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> m
Key (Free f) -> a -> m
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> m)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Free f a)
as
instance FoldableWithKey f => FoldableWithKey (Cofree f) where
foldMapWithKey :: (Key (Cofree f) -> a -> m) -> Cofree f a -> m
foldMapWithKey f :: Key (Cofree f) -> a -> m
f (a :: a
a :< as :: f (Cofree f a)
as) = Key (Cofree f) -> a -> m
f Key (Cofree f)
forall a. Seq a
Seq.empty a
a m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (Key f -> Cofree f a -> m) -> f (Cofree f a) -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey ((Seq (Key f) -> a -> m) -> Cofree f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey ((Seq (Key f) -> a -> m) -> Cofree f a -> m)
-> (Key f -> Seq (Key f) -> a -> m) -> Key f -> Cofree f a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> m)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> m
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> m
Key (Cofree f) -> a -> m
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> m)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Cofree f a)
as
instance FoldableWithKey (Tagged a) where
foldMapWithKey :: (Key (Tagged a) -> a -> m) -> Tagged a a -> m
foldMapWithKey f :: Key (Tagged a) -> a -> m
f (Tagged a :: a
a) = Key (Tagged a) -> a -> m
f () a
a
instance FoldableWithKey Proxy where
foldMapWithKey :: (Key Proxy -> a -> m) -> Proxy a -> m
foldMapWithKey _ _ = m
forall a. Monoid a => a
mempty
instance FoldableWithKey (Const e) where
foldMapWithKey :: (Key (Const e) -> a -> m) -> Const e a -> m
foldMapWithKey _ _ = m
forall a. Monoid a => a
mempty
instance FoldableWithKey (Constant e) where
foldMapWithKey :: (Key (Constant e) -> a -> m) -> Constant e a -> m
foldMapWithKey _ _ = m
forall a. Monoid a => a
mempty
instance FoldableWithKey Tree where
foldMapWithKey :: (Key Tree -> a -> m) -> Tree a -> m
foldMapWithKey f :: Key Tree -> a -> m
f (Node a :: a
a as :: Forest a
as) = Key Tree -> a -> m
f Key Tree
forall a. Seq a
Seq.empty a
a m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (Key [] -> Tree a -> m) -> Forest a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey ((Seq Int -> a -> m) -> Tree a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey ((Seq Int -> a -> m) -> Tree a -> m)
-> (Int -> Seq Int -> a -> m) -> Int -> Tree a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> a -> m) -> (Seq Int -> Seq Int) -> Seq Int -> a -> m
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq Int -> a -> m
Key Tree -> a -> m
f ((Seq Int -> Seq Int) -> Seq Int -> a -> m)
-> (Int -> Seq Int -> Seq Int) -> Int -> Seq Int -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> Int -> Seq Int) -> Int -> Seq Int -> Seq Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq Int -> Int -> Seq Int
forall a. Seq a -> a -> Seq a
(|>)) Forest a
as
instance FoldableWithKey Par1 where
foldMapWithKey :: (Key Par1 -> a -> m) -> Par1 a -> m
foldMapWithKey f :: Key Par1 -> a -> m
f (Par1 a :: a
a) = Key Par1 -> a -> m
f () a
a
instance (FoldableWithKey f, FoldableWithKey g) => FoldableWithKey (f :*: g) where
foldMapWithKey :: (Key (f :*: g) -> a -> m) -> (:*:) f g a -> m
foldMapWithKey f :: Key (f :*: g) -> a -> m
f (a :: f a
a :*: b :: g a
b) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (Either (Key f) (Key g) -> a -> m
Key (f :*: g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (Key g -> a -> m) -> g a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (Either (Key f) (Key g) -> a -> m
Key (f :*: g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (FoldableWithKey f, FoldableWithKey g) => FoldableWithKey (f :+: g) where
foldMapWithKey :: (Key (f :+: g) -> a -> m) -> (:+:) f g a -> m
foldMapWithKey f :: Key (f :+: g) -> a -> m
f (L1 a :: f a
a) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (Either (Key f) (Key g) -> a -> m
Key (f :+: g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a
foldMapWithKey f :: Key (f :+: g) -> a -> m
f (R1 a :: g a
a) = (Key g -> a -> m) -> g a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (Either (Key f) (Key g) -> a -> m
Key (f :+: g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
a
instance FoldableWithKey U1 where
foldMapWithKey :: (Key U1 -> a -> m) -> U1 a -> m
foldMapWithKey _ _ = m
forall a. Monoid a => a
mempty
instance FoldableWithKey V1 where
foldMapWithKey :: (Key V1 -> a -> m) -> V1 a -> m
foldMapWithKey _ v :: V1 a
v = V1 a
v V1 a -> m -> m
forall a b. a -> b -> b
`seq` m
forall a. HasCallStack => a
undefined
instance FoldableWithKey (K1 i c) where
foldMapWithKey :: (Key (K1 i c) -> a -> m) -> K1 i c a -> m
foldMapWithKey _ _ = m
forall a. Monoid a => a
mempty
instance FoldableWithKey f => FoldableWithKey (M1 i c f) where
foldMapWithKey :: (Key (M1 i c f) -> a -> m) -> M1 i c f a -> m
foldMapWithKey f :: Key (M1 i c f) -> a -> m
f (M1 a :: f a
a) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey Key f -> a -> m
Key (M1 i c f) -> a -> m
f f a
a
instance FoldableWithKey f => FoldableWithKey (Rec1 f) where
foldMapWithKey :: (Key (Rec1 f) -> a -> m) -> Rec1 f a -> m
foldMapWithKey f :: Key (Rec1 f) -> a -> m
f (Rec1 a :: f a
a) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey Key f -> a -> m
Key (Rec1 f) -> a -> m
f f a
a
foldrWithKey' :: FoldableWithKey t => (Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey' :: (Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey' f :: Key t -> a -> b -> b
f z0 :: b
z0 xs :: t a
xs = ((b -> b) -> Key t -> a -> b -> b) -> (b -> b) -> t a -> b -> b
forall (t :: * -> *) b a.
FoldableWithKey t =>
(b -> Key t -> a -> b) -> b -> t a -> b
foldlWithKey (b -> b) -> Key t -> a -> b -> b
f' b -> b
forall a. a -> a
id t a
xs b
z0
where f' :: (b -> b) -> Key t -> a -> b -> b
f' k :: b -> b
k key :: Key t
key x :: a
x z :: b
z = b -> b
k (b -> b) -> b -> b
forall a b. (a -> b) -> a -> b
$! Key t -> a -> b -> b
f Key t
key a
x b
z
{-# INLINE foldrWithKey' #-}
foldlWithKey' :: FoldableWithKey t => (b -> Key t -> a -> b) -> b -> t a -> b
foldlWithKey' :: (b -> Key t -> a -> b) -> b -> t a -> b
foldlWithKey' f :: b -> Key t -> a -> b
f z0 :: b
z0 xs :: t a
xs = (Key t -> a -> (b -> b) -> b -> b) -> (b -> b) -> t a -> b -> b
forall (t :: * -> *) a b.
FoldableWithKey t =>
(Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey Key t -> a -> (b -> b) -> b -> b
f' b -> b
forall a. a -> a
id t a
xs b
z0
where f' :: Key t -> a -> (b -> b) -> b -> b
f' key :: Key t
key x :: a
x k :: b -> b
k z :: b
z = b -> b
k (b -> b) -> b -> b
forall a b. (a -> b) -> a -> b
$! b -> Key t -> a -> b
f b
z Key t
key a
x
{-# INLINE foldlWithKey' #-}
foldrWithKeyM :: (FoldableWithKey t, Monad m) => (Key t -> a -> b -> m b) -> b -> t a -> m b
foldrWithKeyM :: (Key t -> a -> b -> m b) -> b -> t a -> m b
foldrWithKeyM f :: Key t -> a -> b -> m b
f z0 :: b
z0 xs :: t a
xs = ((b -> m b) -> Key t -> a -> b -> m b)
-> (b -> m b) -> t a -> b -> m b
forall (t :: * -> *) b a.
FoldableWithKey t =>
(b -> Key t -> a -> b) -> b -> t a -> b
foldlWithKey (b -> m b) -> Key t -> a -> b -> m b
f' b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return t a
xs b
z0
where f' :: (b -> m b) -> Key t -> a -> b -> m b
f' k :: b -> m b
k key :: Key t
key x :: a
x z :: b
z = Key t -> a -> b -> m b
f Key t
key a
x b
z m b -> (b -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= b -> m b
k
{-# INLINE foldrWithKeyM #-}
foldlWithKeyM :: (FoldableWithKey t, Monad m) => (b -> Key t -> a -> m b) -> b -> t a -> m b
foldlWithKeyM :: (b -> Key t -> a -> m b) -> b -> t a -> m b
foldlWithKeyM f :: b -> Key t -> a -> m b
f z0 :: b
z0 xs :: t a
xs = (Key t -> a -> (b -> m b) -> b -> m b)
-> (b -> m b) -> t a -> b -> m b
forall (t :: * -> *) a b.
FoldableWithKey t =>
(Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey Key t -> a -> (b -> m b) -> b -> m b
f' b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return t a
xs b
z0
where f' :: Key t -> a -> (b -> m b) -> b -> m b
f' key :: Key t
key x :: a
x k :: b -> m b
k z :: b
z = b -> Key t -> a -> m b
f b
z Key t
key a
x m b -> (b -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= b -> m b
k
{-# INLINE foldlWithKeyM #-}
traverseWithKey_ :: (FoldableWithKey t, Applicative f) => (Key t -> a -> f b) -> t a -> f ()
traverseWithKey_ :: (Key t -> a -> f b) -> t a -> f ()
traverseWithKey_ f :: Key t -> a -> f b
f = (Key t -> a -> f () -> f ()) -> f () -> t a -> f ()
forall (t :: * -> *) a b.
FoldableWithKey t =>
(Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey ((f b -> f () -> f ()) -> (a -> f b) -> a -> f () -> f ()
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f b -> f () -> f ()
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>) ((a -> f b) -> a -> f () -> f ())
-> (Key t -> a -> f b) -> Key t -> a -> f () -> f ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key t -> a -> f b
f) (() -> f ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure ())
{-# INLINE traverseWithKey_ #-}
forWithKey_ :: (FoldableWithKey t, Applicative f) => t a -> (Key t -> a -> f b) -> f ()
forWithKey_ :: t a -> (Key t -> a -> f b) -> f ()
forWithKey_ = ((Key t -> a -> f b) -> t a -> f ())
-> t a -> (Key t -> a -> f b) -> f ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Key t -> a -> f b) -> t a -> f ()
forall (t :: * -> *) (f :: * -> *) a b.
(FoldableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f ()
traverseWithKey_
{-# INLINE forWithKey_ #-}
mapWithKeyM_ :: (FoldableWithKey t, Monad m) => (Key t -> a -> m b) -> t a -> m ()
mapWithKeyM_ :: (Key t -> a -> m b) -> t a -> m ()
mapWithKeyM_ f :: Key t -> a -> m b
f = (Key t -> a -> m () -> m ()) -> m () -> t a -> m ()
forall (t :: * -> *) a b.
FoldableWithKey t =>
(Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey ((m b -> m () -> m ()) -> (a -> m b) -> a -> m () -> m ()
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap m b -> m () -> m ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
(>>) ((a -> m b) -> a -> m () -> m ())
-> (Key t -> a -> m b) -> Key t -> a -> m () -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key t -> a -> m b
f) (() -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
{-# INLINE mapWithKeyM_ #-}
forWithKeyM_ :: (FoldableWithKey t, Monad m) => t a -> (Key t -> a -> m b) -> m ()
forWithKeyM_ :: t a -> (Key t -> a -> m b) -> m ()
forWithKeyM_ = ((Key t -> a -> m b) -> t a -> m ())
-> t a -> (Key t -> a -> m b) -> m ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Key t -> a -> m b) -> t a -> m ()
forall (t :: * -> *) (m :: * -> *) a b.
(FoldableWithKey t, Monad m) =>
(Key t -> a -> m b) -> t a -> m ()
mapWithKeyM_
{-# INLINE forWithKeyM_ #-}
concatMapWithKey :: FoldableWithKey t => (Key t -> a -> [b]) -> t a -> [b]
concatMapWithKey :: (Key t -> a -> [b]) -> t a -> [b]
concatMapWithKey = (Key t -> a -> [b]) -> t a -> [b]
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey
{-# INLINE concatMapWithKey #-}
anyWithKey :: FoldableWithKey t => (Key t -> a -> Bool) -> t a -> Bool
anyWithKey :: (Key t -> a -> Bool) -> t a -> Bool
anyWithKey p :: Key t -> a -> Bool
p = Any -> Bool
getAny (Any -> Bool) -> (t a -> Any) -> t a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key t -> a -> Any) -> t a -> Any
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey ((Bool -> Any) -> (a -> Bool) -> a -> Any
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Bool -> Any
Any ((a -> Bool) -> a -> Any)
-> (Key t -> a -> Bool) -> Key t -> a -> Any
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key t -> a -> Bool
p)
{-# INLINE anyWithKey #-}
allWithKey :: FoldableWithKey t => (Key t -> a -> Bool) -> t a -> Bool
allWithKey :: (Key t -> a -> Bool) -> t a -> Bool
allWithKey p :: Key t -> a -> Bool
p = All -> Bool
getAll (All -> Bool) -> (t a -> All) -> t a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key t -> a -> All) -> t a -> All
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey ((Bool -> All) -> (a -> Bool) -> a -> All
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Bool -> All
All ((a -> Bool) -> a -> All)
-> (Key t -> a -> Bool) -> Key t -> a -> All
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key t -> a -> Bool
p)
{-# INLINE allWithKey #-}
findWithKey :: FoldableWithKey t => (Key t -> a -> Bool) -> t a -> Maybe a
findWithKey :: (Key t -> a -> Bool) -> t a -> Maybe a
findWithKey p :: Key t -> a -> Bool
p = First a -> Maybe a
forall a. First a -> Maybe a
Monoid.getFirst (First a -> Maybe a) -> (t a -> First a) -> t a -> Maybe a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key t -> a -> First a) -> t a -> First a
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (\k :: Key t
k x :: a
x -> Maybe a -> First a
forall a. Maybe a -> First a
Monoid.First (if Key t -> a -> Bool
p Key t
k a
x then a -> Maybe a
forall a. a -> Maybe a
Just a
x else Maybe a
forall a. Maybe a
Nothing) )
{-# INLINE findWithKey #-}
class (Foldable1 t, FoldableWithKey t) => FoldableWithKey1 t where
foldMapWithKey1 :: Semigroup m => (Key t -> a -> m) -> t a -> m
instance FoldableWithKey1 f => FoldableWithKey1 (Cofree f) where
foldMapWithKey1 :: (Key (Cofree f) -> a -> m) -> Cofree f a -> m
foldMapWithKey1 f :: Key (Cofree f) -> a -> m
f (a :: a
a :< as :: f (Cofree f a)
as) = Key (Cofree f) -> a -> m
f Key (Cofree f)
forall a. Seq a
Seq.empty a
a m -> m -> m
forall a. Semigroup a => a -> a -> a
<> (Key f -> Cofree f a -> m) -> f (Cofree f a) -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 ((Seq (Key f) -> a -> m) -> Cofree f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 ((Seq (Key f) -> a -> m) -> Cofree f a -> m)
-> (Key f -> Seq (Key f) -> a -> m) -> Key f -> Cofree f a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> m)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> m
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> m
Key (Cofree f) -> a -> m
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> m)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Cofree f a)
as
instance FoldableWithKey1 Tree where
foldMapWithKey1 :: (Key Tree -> a -> m) -> Tree a -> m
foldMapWithKey1 f :: Key Tree -> a -> m
f (Node a :: a
a []) = Key Tree -> a -> m
f Key Tree
forall a. Seq a
Seq.empty a
a
foldMapWithKey1 f :: Key Tree -> a -> m
f (Node a :: a
a (x :: Tree a
x:xs :: [Tree a]
xs)) = Key Tree -> a -> m
f Key Tree
forall a. Seq a
Seq.empty a
a m -> m -> m
forall a. Semigroup a => a -> a -> a
<> (Key NonEmpty -> Tree a -> m) -> NonEmpty (Tree a) -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 ((Seq Int -> a -> m) -> Tree a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 ((Seq Int -> a -> m) -> Tree a -> m)
-> (Int -> Seq Int -> a -> m) -> Int -> Tree a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> a -> m) -> (Seq Int -> Seq Int) -> Seq Int -> a -> m
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq Int -> a -> m
Key Tree -> a -> m
f ((Seq Int -> Seq Int) -> Seq Int -> a -> m)
-> (Int -> Seq Int -> Seq Int) -> Int -> Seq Int -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> Int -> Seq Int) -> Int -> Seq Int -> Seq Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq Int -> Int -> Seq Int
forall a. Seq a -> a -> Seq a
(|>)) (Tree a
xTree a -> [Tree a] -> NonEmpty (Tree a)
forall a. a -> [a] -> NonEmpty a
:|[Tree a]
xs)
instance FoldableWithKey1 f => FoldableWithKey1 (Free f) where
foldMapWithKey1 :: (Key (Free f) -> a -> m) -> Free f a -> m
foldMapWithKey1 f :: Key (Free f) -> a -> m
f (Pure a :: a
a) = Key (Free f) -> a -> m
f Key (Free f)
forall a. Seq a
Seq.empty a
a
foldMapWithKey1 f :: Key (Free f) -> a -> m
f (Free as :: f (Free f a)
as) = (Key f -> Free f a -> m) -> f (Free f a) -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 ((Seq (Key f) -> a -> m) -> Free f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 ((Seq (Key f) -> a -> m) -> Free f a -> m)
-> (Key f -> Seq (Key f) -> a -> m) -> Key f -> Free f a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> m)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> m
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> m
Key (Free f) -> a -> m
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> m)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Free f a)
as
instance FoldableWithKey1 (Tagged a) where
foldMapWithKey1 :: (Key (Tagged a) -> a -> m) -> Tagged a a -> m
foldMapWithKey1 f :: Key (Tagged a) -> a -> m
f (Tagged a :: a
a) = Key (Tagged a) -> a -> m
f () a
a
instance (FoldableWithKey1 f, FoldableWithKey1 g) => FoldableWithKey1 (f :*: g) where
foldMapWithKey1 :: (Key (f :*: g) -> a -> m) -> (:*:) f g a -> m
foldMapWithKey1 f :: Key (f :*: g) -> a -> m
f (a :: f a
a :*: b :: g a
b) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 (Either (Key f) (Key g) -> a -> m
Key (f :*: g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a m -> m -> m
forall a. Semigroup a => a -> a -> a
<> (Key g -> a -> m) -> g a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 (Either (Key f) (Key g) -> a -> m
Key (f :*: g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (FoldableWithKey1 f, FoldableWithKey1 g) => FoldableWithKey1 (f :+: g) where
foldMapWithKey1 :: (Key (f :+: g) -> a -> m) -> (:+:) f g a -> m
foldMapWithKey1 f :: Key (f :+: g) -> a -> m
f (L1 a :: f a
a) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 (Either (Key f) (Key g) -> a -> m
Key (f :+: g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a
foldMapWithKey1 f :: Key (f :+: g) -> a -> m
f (R1 a :: g a
a) = (Key g -> a -> m) -> g a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 (Either (Key f) (Key g) -> a -> m
Key (f :+: g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
a
instance FoldableWithKey1 V1 where
foldMapWithKey1 :: (Key V1 -> a -> m) -> V1 a -> m
foldMapWithKey1 _ v :: V1 a
v = V1 a
v V1 a -> m -> m
forall a b. a -> b -> b
`seq` m
forall a. HasCallStack => a
undefined
instance FoldableWithKey1 Par1 where
foldMapWithKey1 :: (Key Par1 -> a -> m) -> Par1 a -> m
foldMapWithKey1 f :: Key Par1 -> a -> m
f (Par1 a :: a
a) = Key Par1 -> a -> m
f () a
a
instance FoldableWithKey1 f => FoldableWithKey1 (M1 i c f) where
foldMapWithKey1 :: (Key (M1 i c f) -> a -> m) -> M1 i c f a -> m
foldMapWithKey1 f :: Key (M1 i c f) -> a -> m
f (M1 a :: f a
a) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 Key f -> a -> m
Key (M1 i c f) -> a -> m
f f a
a
instance FoldableWithKey1 f => FoldableWithKey1 (Rec1 f) where
foldMapWithKey1 :: (Key (Rec1 f) -> a -> m) -> Rec1 f a -> m
foldMapWithKey1 f :: Key (Rec1 f) -> a -> m
f (Rec1 a :: f a
a) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 Key f -> a -> m
Key (Rec1 f) -> a -> m
f f a
a
newtype Act f a = Act { Act f a -> f a
getAct :: f a }
instance Apply f => Semigroup (Act f a) where
Act a :: f a
a <> :: Act f a -> Act f a -> Act f a
<> Act b :: f a
b = f a -> Act f a
forall (f :: * -> *) a. f a -> Act f a
Act (f a
a f a -> f a -> f a
forall (f :: * -> *) a b. Apply f => f a -> f b -> f b
.> f a
b)
instance Functor f => Functor (Act f) where
fmap :: (a -> b) -> Act f a -> Act f b
fmap f :: a -> b
f (Act a :: f a
a) = f b -> Act f b
forall (f :: * -> *) a. f a -> Act f a
Act (a -> b
f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
a)
b :: a
b <$ :: a -> Act f b -> Act f a
<$ Act a :: f b
a = f a -> Act f a
forall (f :: * -> *) a. f a -> Act f a
Act (a
b a -> f b -> f a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ f b
a)
traverseWithKey1_ :: (FoldableWithKey1 t, Apply f) => (Key t -> a -> f b) -> t a -> f ()
traverseWithKey1_ :: (Key t -> a -> f b) -> t a -> f ()
traverseWithKey1_ f :: Key t -> a -> f b
f = () -> f b -> f ()
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
(<$) () (f b -> f ()) -> (t a -> f b) -> t a -> f ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Act f b -> f b
forall (f :: * -> *) a. Act f a -> f a
getAct (Act f b -> f b) -> (t a -> Act f b) -> t a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key t -> a -> Act f b) -> t a -> Act f b
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 ((f b -> Act f b) -> (a -> f b) -> a -> Act f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f b -> Act f b
forall (f :: * -> *) a. f a -> Act f a
Act ((a -> f b) -> a -> Act f b)
-> (Key t -> a -> f b) -> Key t -> a -> Act f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key t -> a -> f b
f)
{-# INLINE traverseWithKey1_ #-}
forWithKey1_ :: (FoldableWithKey1 t, Apply f) => t a -> (Key t -> a -> f b) -> f ()
forWithKey1_ :: t a -> (Key t -> a -> f b) -> f ()
forWithKey1_ = ((Key t -> a -> f b) -> t a -> f ())
-> t a -> (Key t -> a -> f b) -> f ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Key t -> a -> f b) -> t a -> f ()
forall (t :: * -> *) (f :: * -> *) a b.
(FoldableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f ()
traverseWithKey1_
{-# INLINE forWithKey1_ #-}
foldMapWithKeyDefault1 :: (FoldableWithKey1 t, Monoid m) => (Key t -> a -> m) -> t a -> m
foldMapWithKeyDefault1 :: (Key t -> a -> m) -> t a -> m
foldMapWithKeyDefault1 f :: Key t -> a -> m
f = WrappedMonoid m -> m
forall m. WrappedMonoid m -> m
unwrapMonoid (WrappedMonoid m -> m) -> (t a -> WrappedMonoid m) -> t a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key t -> a -> WrappedMonoid m) -> t a -> WrappedMonoid m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey ((m -> WrappedMonoid m) -> (a -> m) -> a -> WrappedMonoid m
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap m -> WrappedMonoid m
forall m. m -> WrappedMonoid m
WrapMonoid ((a -> m) -> a -> WrappedMonoid m)
-> (Key t -> a -> m) -> Key t -> a -> WrappedMonoid m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key t -> a -> m
f)
{-# INLINE foldMapWithKeyDefault1 #-}
class (Keyed t, FoldableWithKey t, Traversable t) => TraversableWithKey t where
traverseWithKey :: Applicative f => (Key t -> a -> f b) -> t a -> f (t b)
mapWithKeyM :: Monad m => (Key t -> a -> m b) -> t a -> m (t b)
mapWithKeyM f :: Key t -> a -> m b
f = WrappedMonad m (t b) -> m (t b)
forall (m :: * -> *) a. WrappedMonad m a -> m a
unwrapMonad (WrappedMonad m (t b) -> m (t b))
-> (t a -> WrappedMonad m (t b)) -> t a -> m (t b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key t -> a -> WrappedMonad m b) -> t a -> WrappedMonad m (t b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey ((m b -> WrappedMonad m b) -> (a -> m b) -> a -> WrappedMonad m b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap m b -> WrappedMonad m b
forall (m :: * -> *) a. m a -> WrappedMonad m a
WrapMonad ((a -> m b) -> a -> WrappedMonad m b)
-> (Key t -> a -> m b) -> Key t -> a -> WrappedMonad m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key t -> a -> m b
f)
instance TraversableWithKey (Tagged a) where
traverseWithKey :: (Key (Tagged a) -> a -> f b) -> Tagged a a -> f (Tagged a b)
traverseWithKey f :: Key (Tagged a) -> a -> f b
f (Tagged a :: a
a) = b -> Tagged a b
forall k (s :: k) b. b -> Tagged s b
Tagged (b -> Tagged a b) -> f b -> f (Tagged a b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key (Tagged a) -> a -> f b
f () a
a
instance TraversableWithKey Proxy where
traverseWithKey :: (Key Proxy -> a -> f b) -> Proxy a -> f (Proxy b)
traverseWithKey _ _ = Proxy b -> f (Proxy b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Proxy b
forall k (t :: k). Proxy t
Proxy
instance TraversableWithKey (Const e) where
traverseWithKey :: (Key (Const e) -> a -> f b) -> Const e a -> f (Const e b)
traverseWithKey _ (Const a :: e
a) = Const e b -> f (Const e b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (e -> Const e b
forall k a (b :: k). a -> Const a b
Const e
a)
instance TraversableWithKey (Constant e) where
traverseWithKey :: (Key (Constant e) -> a -> f b) -> Constant e a -> f (Constant e b)
traverseWithKey _ (Constant a :: e
a) = Constant e b -> f (Constant e b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (e -> Constant e b
forall k a (b :: k). a -> Constant a b
Constant e
a)
instance TraversableWithKey f => TraversableWithKey (Cofree f) where
traverseWithKey :: (Key (Cofree f) -> a -> f b) -> Cofree f a -> f (Cofree f b)
traverseWithKey f :: Key (Cofree f) -> a -> f b
f (a :: a
a :< as :: f (Cofree f a)
as) = b -> f (Cofree f b) -> Cofree f b
forall (f :: * -> *) a. a -> f (Cofree f a) -> Cofree f a
(:<) (b -> f (Cofree f b) -> Cofree f b)
-> f b -> f (f (Cofree f b) -> Cofree f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key (Cofree f) -> a -> f b
f Key (Cofree f)
forall a. Seq a
Seq.empty a
a f (f (Cofree f b) -> Cofree f b)
-> f (f (Cofree f b)) -> f (Cofree f b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Key f -> Cofree f a -> f (Cofree f b))
-> f (Cofree f a) -> f (f (Cofree f b))
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey ((Seq (Key f) -> a -> f b) -> Cofree f a -> f (Cofree f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey ((Seq (Key f) -> a -> f b) -> Cofree f a -> f (Cofree f b))
-> (Key f -> Seq (Key f) -> a -> f b)
-> Key f
-> Cofree f a
-> f (Cofree f b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> f b)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> f b
Key (Cofree f) -> a -> f b
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> f b)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Cofree f a)
as
instance TraversableWithKey Tree where
traverseWithKey :: (Key Tree -> a -> f b) -> Tree a -> f (Tree b)
traverseWithKey f :: Key Tree -> a -> f b
f (Node a :: a
a as :: Forest a
as) = b -> Forest b -> Tree b
forall a. a -> Forest a -> Tree a
Node (b -> Forest b -> Tree b) -> f b -> f (Forest b -> Tree b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key Tree -> a -> f b
f Key Tree
forall a. Seq a
Seq.empty a
a f (Forest b -> Tree b) -> f (Forest b) -> f (Tree b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Key [] -> Tree a -> f (Tree b)) -> Forest a -> f (Forest b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey ((Seq Int -> a -> f b) -> Tree a -> f (Tree b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey ((Seq Int -> a -> f b) -> Tree a -> f (Tree b))
-> (Int -> Seq Int -> a -> f b) -> Int -> Tree a -> f (Tree b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> a -> f b)
-> (Seq Int -> Seq Int) -> Seq Int -> a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq Int -> a -> f b
Key Tree -> a -> f b
f ((Seq Int -> Seq Int) -> Seq Int -> a -> f b)
-> (Int -> Seq Int -> Seq Int) -> Int -> Seq Int -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> Int -> Seq Int) -> Int -> Seq Int -> Seq Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq Int -> Int -> Seq Int
forall a. Seq a -> a -> Seq a
(|>)) Forest a
as
instance TraversableWithKey f => TraversableWithKey (Free f) where
traverseWithKey :: (Key (Free f) -> a -> f b) -> Free f a -> f (Free f b)
traverseWithKey f :: Key (Free f) -> a -> f b
f (Pure a :: a
a) = b -> Free f b
forall (f :: * -> *) a. a -> Free f a
Pure (b -> Free f b) -> f b -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key (Free f) -> a -> f b
f Key (Free f)
forall a. Seq a
Seq.empty a
a
traverseWithKey f :: Key (Free f) -> a -> f b
f (Free as :: f (Free f a)
as) = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f b) -> Free f b) -> f (f (Free f b)) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> Free f a -> f (Free f b))
-> f (Free f a) -> f (f (Free f b))
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey ((Seq (Key f) -> a -> f b) -> Free f a -> f (Free f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey ((Seq (Key f) -> a -> f b) -> Free f a -> f (Free f b))
-> (Key f -> Seq (Key f) -> a -> f b)
-> Key f
-> Free f a
-> f (Free f b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> f b)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> f b
Key (Free f) -> a -> f b
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> f b)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Free f a)
as
instance (TraversableWithKey f, TraversableWithKey g) => TraversableWithKey (f :*: g) where
traverseWithKey :: (Key (f :*: g) -> a -> f b) -> (:*:) f g a -> f ((:*:) f g b)
traverseWithKey f :: Key (f :*: g) -> a -> f b
f (a :: f a
a :*: b :: g a
b) = f b -> g b -> (:*:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
(:*:) (f b -> g b -> (:*:) f g b) -> f (f b) -> f (g b -> (:*:) f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (Either (Key f) (Key g) -> a -> f b
Key (f :*: g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a f (g b -> (:*:) f g b) -> f (g b) -> f ((:*:) f g b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Key g -> a -> f b) -> g a -> f (g b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (Either (Key f) (Key g) -> a -> f b
Key (f :*: g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (TraversableWithKey f, TraversableWithKey g) => TraversableWithKey (f :+: g) where
traverseWithKey :: (Key (f :+: g) -> a -> f b) -> (:+:) f g a -> f ((:+:) f g b)
traverseWithKey f :: Key (f :+: g) -> a -> f b
f (L1 as :: f a
as) = f b -> (:+:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1 (f b -> (:+:) f g b) -> f (f b) -> f ((:+:) f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (Either (Key f) (Key g) -> a -> f b
Key (f :+: g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
as
traverseWithKey f :: Key (f :+: g) -> a -> f b
f (R1 bs :: g a
bs) = g b -> (:+:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1 (g b -> (:+:) f g b) -> f (g b) -> f ((:+:) f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key g -> a -> f b) -> g a -> f (g b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (Either (Key f) (Key g) -> a -> f b
Key (f :+: g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
bs
instance TraversableWithKey Par1 where
traverseWithKey :: (Key Par1 -> a -> f b) -> Par1 a -> f (Par1 b)
traverseWithKey f :: Key Par1 -> a -> f b
f (Par1 a :: a
a) = b -> Par1 b
forall p. p -> Par1 p
Par1 (b -> Par1 b) -> f b -> f (Par1 b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key Par1 -> a -> f b
f () a
a
instance TraversableWithKey U1 where
traverseWithKey :: (Key U1 -> a -> f b) -> U1 a -> f (U1 b)
traverseWithKey _ U1 = U1 b -> f (U1 b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure U1 b
forall k (p :: k). U1 p
U1
instance TraversableWithKey V1 where
traverseWithKey :: (Key V1 -> a -> f b) -> V1 a -> f (V1 b)
traverseWithKey _ v :: V1 a
v = V1 a
v V1 a -> f (V1 b) -> f (V1 b)
forall a b. a -> b -> b
`seq` f (V1 b)
forall a. HasCallStack => a
undefined
instance TraversableWithKey (K1 i c) where
traverseWithKey :: (Key (K1 i c) -> a -> f b) -> K1 i c a -> f (K1 i c b)
traverseWithKey _ (K1 p :: c
p) = K1 i c b -> f (K1 i c b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (c -> K1 i c b
forall k i c (p :: k). c -> K1 i c p
K1 c
p)
instance TraversableWithKey f => TraversableWithKey (Rec1 f) where
traverseWithKey :: (Key (Rec1 f) -> a -> f b) -> Rec1 f a -> f (Rec1 f b)
traverseWithKey f :: Key (Rec1 f) -> a -> f b
f (Rec1 a :: f a
a) = f b -> Rec1 f b
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 (f b -> Rec1 f b) -> f (f b) -> f (Rec1 f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey Key f -> a -> f b
Key (Rec1 f) -> a -> f b
f f a
a
instance TraversableWithKey f => TraversableWithKey (M1 i c f) where
traverseWithKey :: (Key (M1 i c f) -> a -> f b) -> M1 i c f a -> f (M1 i c f b)
traverseWithKey f :: Key (M1 i c f) -> a -> f b
f (M1 a :: f a
a) = f b -> M1 i c f b
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 (f b -> M1 i c f b) -> f (f b) -> f (M1 i c f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey Key f -> a -> f b
Key (M1 i c f) -> a -> f b
f f a
a
forWithKey :: (TraversableWithKey t, Applicative f) => t a -> (Key t -> a -> f b) -> f (t b)
forWithKey :: t a -> (Key t -> a -> f b) -> f (t b)
forWithKey = ((Key t -> a -> f b) -> t a -> f (t b))
-> t a -> (Key t -> a -> f b) -> f (t b)
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Key t -> a -> f b) -> t a -> f (t b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey
{-# INLINE forWithKey #-}
forWithKeyM :: (TraversableWithKey t, Monad m) => t a -> (Key t -> a -> m b) -> m (t b)
forWithKeyM :: t a -> (Key t -> a -> m b) -> m (t b)
forWithKeyM = ((Key t -> a -> m b) -> t a -> m (t b))
-> t a -> (Key t -> a -> m b) -> m (t b)
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Key t -> a -> m b) -> t a -> m (t b)
forall (t :: * -> *) (m :: * -> *) a b.
(TraversableWithKey t, Monad m) =>
(Key t -> a -> m b) -> t a -> m (t b)
mapWithKeyM
{-# INLINE forWithKeyM #-}
newtype StateL s a = StateL { StateL s a -> s -> (s, a)
runStateL :: s -> (s, a) }
instance Functor (StateL s) where
fmap :: (a -> b) -> StateL s a -> StateL s b
fmap f :: a -> b
f (StateL k :: s -> (s, a)
k) = (s -> (s, b)) -> StateL s b
forall s a. (s -> (s, a)) -> StateL s a
StateL ((s -> (s, b)) -> StateL s b) -> (s -> (s, b)) -> StateL s b
forall a b. (a -> b) -> a -> b
$ \ s :: s
s ->
let (s' :: s
s', v :: a
v) = s -> (s, a)
k s
s in (s
s', a -> b
f a
v)
instance Applicative (StateL s) where
pure :: a -> StateL s a
pure x :: a
x = (s -> (s, a)) -> StateL s a
forall s a. (s -> (s, a)) -> StateL s a
StateL (\ s :: s
s -> (s
s, a
x))
StateL kf :: s -> (s, a -> b)
kf <*> :: StateL s (a -> b) -> StateL s a -> StateL s b
<*> StateL kv :: s -> (s, a)
kv = (s -> (s, b)) -> StateL s b
forall s a. (s -> (s, a)) -> StateL s a
StateL ((s -> (s, b)) -> StateL s b) -> (s -> (s, b)) -> StateL s b
forall a b. (a -> b) -> a -> b
$ \ s :: s
s ->
let (s' :: s
s', f :: a -> b
f) = s -> (s, a -> b)
kf s
s
(s'' :: s
s'', v :: a
v) = s -> (s, a)
kv s
s'
in (s
s'', a -> b
f a
v)
mapAccumWithKeyL :: TraversableWithKey t => (Key t -> a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumWithKeyL :: (Key t -> a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumWithKeyL f :: Key t -> a -> b -> (a, c)
f s :: a
s t :: t b
t = StateL a (t c) -> a -> (a, t c)
forall s a. StateL s a -> s -> (s, a)
runStateL ((Key t -> b -> StateL a c) -> t b -> StateL a (t c)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (\k :: Key t
k b :: b
b -> (a -> (a, c)) -> StateL a c
forall s a. (s -> (s, a)) -> StateL s a
StateL (\a :: a
a -> Key t -> a -> b -> (a, c)
f Key t
k a
a b
b)) t b
t) a
s
{-# INLINE mapAccumWithKeyL #-}
newtype StateR s a = StateR { StateR s a -> s -> (s, a)
runStateR :: s -> (s, a) }
instance Functor (StateR s) where
fmap :: (a -> b) -> StateR s a -> StateR s b
fmap f :: a -> b
f (StateR k :: s -> (s, a)
k) = (s -> (s, b)) -> StateR s b
forall s a. (s -> (s, a)) -> StateR s a
StateR ((s -> (s, b)) -> StateR s b) -> (s -> (s, b)) -> StateR s b
forall a b. (a -> b) -> a -> b
$ \ s :: s
s ->
let (s' :: s
s', v :: a
v) = s -> (s, a)
k s
s in (s
s', a -> b
f a
v)
instance Applicative (StateR s) where
pure :: a -> StateR s a
pure x :: a
x = (s -> (s, a)) -> StateR s a
forall s a. (s -> (s, a)) -> StateR s a
StateR (\ s :: s
s -> (s
s, a
x))
StateR kf :: s -> (s, a -> b)
kf <*> :: StateR s (a -> b) -> StateR s a -> StateR s b
<*> StateR kv :: s -> (s, a)
kv = (s -> (s, b)) -> StateR s b
forall s a. (s -> (s, a)) -> StateR s a
StateR ((s -> (s, b)) -> StateR s b) -> (s -> (s, b)) -> StateR s b
forall a b. (a -> b) -> a -> b
$ \ s :: s
s ->
let (s' :: s
s', v :: a
v) = s -> (s, a)
kv s
s
(s'' :: s
s'', f :: a -> b
f) = s -> (s, a -> b)
kf s
s'
in (s
s'', a -> b
f a
v)
mapAccumWithKeyR :: TraversableWithKey t => (Key t -> a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumWithKeyR :: (Key t -> a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumWithKeyR f :: Key t -> a -> b -> (a, c)
f s :: a
s t :: t b
t = StateR a (t c) -> a -> (a, t c)
forall s a. StateR s a -> s -> (s, a)
runStateR ((Key t -> b -> StateR a c) -> t b -> StateR a (t c)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (\k :: Key t
k b :: b
b -> (a -> (a, c)) -> StateR a c
forall s a. (s -> (s, a)) -> StateR s a
StateR (\a :: a
a -> Key t -> a -> b -> (a, c)
f Key t
k a
a b
b)) t b
t) a
s
{-# INLINE mapAccumWithKeyR #-}
mapWithKeyDefault :: TraversableWithKey t => (Key t -> a -> b) -> t a -> t b
mapWithKeyDefault :: (Key t -> a -> b) -> t a -> t b
mapWithKeyDefault f :: Key t -> a -> b
f = Identity (t b) -> t b
forall a. Identity a -> a
runIdentity (Identity (t b) -> t b) -> (t a -> Identity (t b)) -> t a -> t b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key t -> a -> Identity b) -> t a -> Identity (t b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey ((b -> Identity b) -> (a -> b) -> a -> Identity b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> Identity b
forall a. a -> Identity a
Identity ((a -> b) -> a -> Identity b)
-> (Key t -> a -> b) -> Key t -> a -> Identity b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key t -> a -> b
f)
{-# INLINE mapWithKeyDefault #-}
foldMapWithKeyDefault :: (TraversableWithKey t, Monoid m) => (Key t -> a -> m) -> t a -> m
foldMapWithKeyDefault :: (Key t -> a -> m) -> t a -> m
foldMapWithKeyDefault f :: Key t -> a -> m
f = Const m (t Any) -> m
forall a k (b :: k). Const a b -> a
getConst (Const m (t Any) -> m) -> (t a -> Const m (t Any)) -> t a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key t -> a -> Const m Any) -> t a -> Const m (t Any)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey ((m -> Const m Any) -> (a -> m) -> a -> Const m Any
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap m -> Const m Any
forall k a (b :: k). a -> Const a b
Const ((a -> m) -> a -> Const m Any)
-> (Key t -> a -> m) -> Key t -> a -> Const m Any
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key t -> a -> m
f)
{-# INLINE foldMapWithKeyDefault #-}
class (Traversable1 t, FoldableWithKey1 t, TraversableWithKey t) => TraversableWithKey1 t where
traverseWithKey1 :: Apply f => (Key t -> a -> f b) -> t a -> f (t b)
instance TraversableWithKey1 (Tagged a) where
traverseWithKey1 :: (Key (Tagged a) -> a -> f b) -> Tagged a a -> f (Tagged a b)
traverseWithKey1 f :: Key (Tagged a) -> a -> f b
f (Tagged a :: a
a) = b -> Tagged a b
forall k (s :: k) b. b -> Tagged s b
Tagged (b -> Tagged a b) -> f b -> f (Tagged a b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key (Tagged a) -> a -> f b
f () a
a
instance TraversableWithKey1 f => TraversableWithKey1 (Cofree f) where
traverseWithKey1 :: (Key (Cofree f) -> a -> f b) -> Cofree f a -> f (Cofree f b)
traverseWithKey1 f :: Key (Cofree f) -> a -> f b
f (a :: a
a :< as :: f (Cofree f a)
as) = b -> f (Cofree f b) -> Cofree f b
forall (f :: * -> *) a. a -> f (Cofree f a) -> Cofree f a
(:<) (b -> f (Cofree f b) -> Cofree f b)
-> f b -> f (f (Cofree f b) -> Cofree f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key (Cofree f) -> a -> f b
f Key (Cofree f)
forall a. Seq a
Seq.empty a
a f (f (Cofree f b) -> Cofree f b)
-> f (f (Cofree f b)) -> f (Cofree f b)
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> (Key f -> Cofree f a -> f (Cofree f b))
-> f (Cofree f a) -> f (f (Cofree f b))
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 ((Seq (Key f) -> a -> f b) -> Cofree f a -> f (Cofree f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 ((Seq (Key f) -> a -> f b) -> Cofree f a -> f (Cofree f b))
-> (Key f -> Seq (Key f) -> a -> f b)
-> Key f
-> Cofree f a
-> f (Cofree f b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> f b)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> f b
Key (Cofree f) -> a -> f b
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> f b)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Cofree f a)
as
instance TraversableWithKey1 Tree where
traverseWithKey1 :: (Key Tree -> a -> f b) -> Tree a -> f (Tree b)
traverseWithKey1 f :: Key Tree -> a -> f b
f (Node a :: a
a []) = (b -> Forest b -> Tree b
forall a. a -> Forest a -> Tree a
`Node`[]) (b -> Tree b) -> f b -> f (Tree b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key Tree -> a -> f b
f Key Tree
forall a. Seq a
Seq.empty a
a
traverseWithKey1 f :: Key Tree -> a -> f b
f (Node a :: a
a (x :: Tree a
x:xs :: [Tree a]
xs)) = (\b :: b
b (y :: Tree b
y:|ys :: Forest b
ys) -> b -> Forest b -> Tree b
forall a. a -> Forest a -> Tree a
Node b
b (Tree b
yTree b -> Forest b -> Forest b
forall a. a -> [a] -> [a]
:Forest b
ys)) (b -> NonEmpty (Tree b) -> Tree b)
-> f b -> f (NonEmpty (Tree b) -> Tree b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key Tree -> a -> f b
f Key Tree
forall a. Seq a
Seq.empty a
a f (NonEmpty (Tree b) -> Tree b)
-> f (NonEmpty (Tree b)) -> f (Tree b)
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> (Key NonEmpty -> Tree a -> f (Tree b))
-> NonEmpty (Tree a) -> f (NonEmpty (Tree b))
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 ((Seq Int -> a -> f b) -> Tree a -> f (Tree b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 ((Seq Int -> a -> f b) -> Tree a -> f (Tree b))
-> (Int -> Seq Int -> a -> f b) -> Int -> Tree a -> f (Tree b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> a -> f b)
-> (Seq Int -> Seq Int) -> Seq Int -> a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq Int -> a -> f b
Key Tree -> a -> f b
f ((Seq Int -> Seq Int) -> Seq Int -> a -> f b)
-> (Int -> Seq Int -> Seq Int) -> Int -> Seq Int -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq Int -> Int -> Seq Int) -> Int -> Seq Int -> Seq Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq Int -> Int -> Seq Int
forall a. Seq a -> a -> Seq a
(|>)) (Tree a
xTree a -> [Tree a] -> NonEmpty (Tree a)
forall a. a -> [a] -> NonEmpty a
:|[Tree a]
xs)
instance TraversableWithKey1 f => TraversableWithKey1 (Free f) where
traverseWithKey1 :: (Key (Free f) -> a -> f b) -> Free f a -> f (Free f b)
traverseWithKey1 f :: Key (Free f) -> a -> f b
f (Pure a :: a
a) = b -> Free f b
forall (f :: * -> *) a. a -> Free f a
Pure (b -> Free f b) -> f b -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key (Free f) -> a -> f b
f Key (Free f)
forall a. Seq a
Seq.empty a
a
traverseWithKey1 f :: Key (Free f) -> a -> f b
f (Free as :: f (Free f a)
as) = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f b) -> Free f b) -> f (f (Free f b)) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> Free f a -> f (Free f b))
-> f (Free f a) -> f (f (Free f b))
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 ((Seq (Key f) -> a -> f b) -> Free f a -> f (Free f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 ((Seq (Key f) -> a -> f b) -> Free f a -> f (Free f b))
-> (Key f -> Seq (Key f) -> a -> f b)
-> Key f
-> Free f a
-> f (Free f b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> a -> f b)
-> (Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Seq (Key f) -> a -> f b
Key (Free f) -> a -> f b
f ((Seq (Key f) -> Seq (Key f)) -> Seq (Key f) -> a -> f b)
-> (Key f -> Seq (Key f) -> Seq (Key f))
-> Key f
-> Seq (Key f)
-> a
-> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Seq (Key f) -> Key f -> Seq (Key f))
-> Key f -> Seq (Key f) -> Seq (Key f)
forall a b c. (a -> b -> c) -> b -> a -> c
flip Seq (Key f) -> Key f -> Seq (Key f)
forall a. Seq a -> a -> Seq a
(|>)) f (Free f a)
as
instance TraversableWithKey1 Par1 where
traverseWithKey1 :: (Key Par1 -> a -> f b) -> Par1 a -> f (Par1 b)
traverseWithKey1 f :: Key Par1 -> a -> f b
f (Par1 a :: a
a) = b -> Par1 b
forall p. p -> Par1 p
Par1 (b -> Par1 b) -> f b -> f (Par1 b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key Par1 -> a -> f b
f () a
a
instance TraversableWithKey1 f => TraversableWithKey1 (Rec1 f) where
traverseWithKey1 :: (Key (Rec1 f) -> a -> f b) -> Rec1 f a -> f (Rec1 f b)
traverseWithKey1 f :: Key (Rec1 f) -> a -> f b
f (Rec1 a :: f a
a) = f b -> Rec1 f b
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 (f b -> Rec1 f b) -> f (f b) -> f (Rec1 f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 Key f -> a -> f b
Key (Rec1 f) -> a -> f b
f f a
a
instance TraversableWithKey1 f => TraversableWithKey1 (M1 i c f) where
traverseWithKey1 :: (Key (M1 i c f) -> a -> f b) -> M1 i c f a -> f (M1 i c f b)
traverseWithKey1 f :: Key (M1 i c f) -> a -> f b
f (M1 a :: f a
a) = f b -> M1 i c f b
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 (f b -> M1 i c f b) -> f (f b) -> f (M1 i c f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 Key f -> a -> f b
Key (M1 i c f) -> a -> f b
f f a
a
instance TraversableWithKey1 V1 where
traverseWithKey1 :: (Key V1 -> a -> f b) -> V1 a -> f (V1 b)
traverseWithKey1 _ v :: V1 a
v = V1 a
v V1 a -> f (V1 b) -> f (V1 b)
forall a b. a -> b -> b
`seq` f (V1 b)
forall a. HasCallStack => a
undefined
instance (TraversableWithKey1 f, TraversableWithKey1 g) => TraversableWithKey1 (f :*: g) where
traverseWithKey1 :: (Key (f :*: g) -> a -> f b) -> (:*:) f g a -> f ((:*:) f g b)
traverseWithKey1 f :: Key (f :*: g) -> a -> f b
f (a :: f a
a :*: b :: g a
b) = f b -> g b -> (:*:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
(:*:) (f b -> g b -> (:*:) f g b) -> f (f b) -> f (g b -> (:*:) f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (Either (Key f) (Key g) -> a -> f b
Key (f :*: g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a f (g b -> (:*:) f g b) -> f (g b) -> f ((:*:) f g b)
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> (Key g -> a -> f b) -> g a -> f (g b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (Either (Key f) (Key g) -> a -> f b
Key (f :*: g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (TraversableWithKey1 f, TraversableWithKey1 g) => TraversableWithKey1 (f :+: g) where
traverseWithKey1 :: (Key (f :+: g) -> a -> f b) -> (:+:) f g a -> f ((:+:) f g b)
traverseWithKey1 f :: Key (f :+: g) -> a -> f b
f (L1 as :: f a
as) = f b -> (:+:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1 (f b -> (:+:) f g b) -> f (f b) -> f ((:+:) f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (Either (Key f) (Key g) -> a -> f b
Key (f :+: g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
as
traverseWithKey1 f :: Key (f :+: g) -> a -> f b
f (R1 bs :: g a
bs) = g b -> (:+:) f g b
forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1 (g b -> (:+:) f g b) -> f (g b) -> f ((:+:) f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key g -> a -> f b) -> g a -> f (g b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (Either (Key f) (Key g) -> a -> f b
Key (f :+: g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
bs
foldMapWithKey1Default :: (TraversableWithKey1 t, Semigroup m) => (Key t -> a -> m) -> t a -> m
foldMapWithKey1Default :: (Key t -> a -> m) -> t a -> m
foldMapWithKey1Default f :: Key t -> a -> m
f = Const m (t Any) -> m
forall a k (b :: k). Const a b -> a
getConst (Const m (t Any) -> m) -> (t a -> Const m (t Any)) -> t a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key t -> a -> Const m Any) -> t a -> Const m (t Any)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (\k :: Key t
k -> m -> Const m Any
forall k a (b :: k). a -> Const a b
Const (m -> Const m Any) -> (a -> m) -> a -> Const m Any
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key t -> a -> m
f Key t
k)
{-# INLINE foldMapWithKey1Default #-}
type instance Key Identity = ()
instance Indexable Identity where
index :: Identity a -> Key Identity -> a
index (Identity a :: a
a) _ = a
a
instance Lookup Identity where
lookup :: Key Identity -> Identity a -> Maybe a
lookup _ (Identity a :: a
a) = a -> Maybe a
forall a. a -> Maybe a
Just a
a
instance Adjustable Identity where
adjust :: (a -> a) -> Key Identity -> Identity a -> Identity a
adjust f :: a -> a
f _ (Identity a :: a
a) = a -> Identity a
forall a. a -> Identity a
Identity (a -> a
f a
a)
replace :: Key Identity -> a -> Identity a -> Identity a
replace _ b :: a
b _ = a -> Identity a
forall a. a -> Identity a
Identity a
b
instance Zip Identity where
zipWith :: (a -> b -> c) -> Identity a -> Identity b -> Identity c
zipWith f :: a -> b -> c
f (Identity a :: a
a) (Identity b :: b
b) = c -> Identity c
forall a. a -> Identity a
Identity (a -> b -> c
f a
a b
b)
instance ZipWithKey Identity where
zipWithKey :: (Key Identity -> a -> b -> c)
-> Identity a -> Identity b -> Identity c
zipWithKey f :: Key Identity -> a -> b -> c
f (Identity a :: a
a) (Identity b :: b
b) = c -> Identity c
forall a. a -> Identity a
Identity (Key Identity -> a -> b -> c
f () a
a b
b)
instance Keyed Identity where
mapWithKey :: (Key Identity -> a -> b) -> Identity a -> Identity b
mapWithKey f :: Key Identity -> a -> b
f = b -> Identity b
forall a. a -> Identity a
Identity (b -> Identity b) -> (Identity a -> b) -> Identity a -> Identity b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key Identity -> a -> b
f () (a -> b) -> (Identity a -> a) -> Identity a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Identity a -> a
forall a. Identity a -> a
runIdentity
instance FoldableWithKey Identity where
foldrWithKey :: (Key Identity -> a -> b -> b) -> b -> Identity a -> b
foldrWithKey f :: Key Identity -> a -> b -> b
f z :: b
z (Identity a :: a
a) = Key Identity -> a -> b -> b
f () a
a b
z
instance FoldableWithKey1 Identity where
foldMapWithKey1 :: (Key Identity -> a -> m) -> Identity a -> m
foldMapWithKey1 f :: Key Identity -> a -> m
f (Identity a :: a
a) = Key Identity -> a -> m
f () a
a
instance TraversableWithKey Identity where
traverseWithKey :: (Key Identity -> a -> f b) -> Identity a -> f (Identity b)
traverseWithKey f :: Key Identity -> a -> f b
f (Identity a :: a
a) = b -> Identity b
forall a. a -> Identity a
Identity (b -> Identity b) -> f b -> f (Identity b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key Identity -> a -> f b
f () a
a
instance TraversableWithKey1 Identity where
traverseWithKey1 :: (Key Identity -> a -> f b) -> Identity a -> f (Identity b)
traverseWithKey1 f :: Key Identity -> a -> f b
f (Identity a :: a
a) = b -> Identity b
forall a. a -> Identity a
Identity (b -> Identity b) -> f b -> f (Identity b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key Identity -> a -> f b
f () a
a
type instance Key (IdentityT m) = Key m
instance Indexable m => Indexable (IdentityT m) where
index :: IdentityT m a -> Key (IdentityT m) -> a
index (IdentityT m :: m a
m) i :: Key (IdentityT m)
i = m a -> Key m -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index m a
m Key m
Key (IdentityT m)
i
instance Lookup m => Lookup (IdentityT m) where
lookup :: Key (IdentityT m) -> IdentityT m a -> Maybe a
lookup i :: Key (IdentityT m)
i (IdentityT m :: m a
m) = Key m -> m a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key m
Key (IdentityT m)
i m a
m
instance Zip m => Zip (IdentityT m) where
zipWith :: (a -> b -> c) -> IdentityT m a -> IdentityT m b -> IdentityT m c
zipWith f :: a -> b -> c
f (IdentityT m :: m a
m) (IdentityT n :: m b
n) = m c -> IdentityT m c
forall k (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT ((a -> b -> c) -> m a -> m b -> m c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
f m a
m m b
n)
instance ZipWithKey m => ZipWithKey (IdentityT m) where
zipWithKey :: (Key (IdentityT m) -> a -> b -> c)
-> IdentityT m a -> IdentityT m b -> IdentityT m c
zipWithKey f :: Key (IdentityT m) -> a -> b -> c
f (IdentityT m :: m a
m) (IdentityT n :: m b
n) = m c -> IdentityT m c
forall k (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT ((Key m -> a -> b -> c) -> m a -> m b -> m c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey Key m -> a -> b -> c
Key (IdentityT m) -> a -> b -> c
f m a
m m b
n)
instance Keyed m => Keyed (IdentityT m) where
mapWithKey :: (Key (IdentityT m) -> a -> b) -> IdentityT m a -> IdentityT m b
mapWithKey f :: Key (IdentityT m) -> a -> b
f = m b -> IdentityT m b
forall k (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT (m b -> IdentityT m b)
-> (IdentityT m a -> m b) -> IdentityT m a -> IdentityT m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key m -> a -> b) -> m a -> m b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey Key m -> a -> b
Key (IdentityT m) -> a -> b
f (m a -> m b) -> (IdentityT m a -> m a) -> IdentityT m a -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IdentityT m a -> m a
forall k (f :: k -> *) (a :: k). IdentityT f a -> f a
runIdentityT
instance FoldableWithKey m => FoldableWithKey (IdentityT m) where
foldrWithKey :: (Key (IdentityT m) -> a -> b -> b) -> b -> IdentityT m a -> b
foldrWithKey f :: Key (IdentityT m) -> a -> b -> b
f z :: b
z (IdentityT m :: m a
m) = (Key m -> a -> b -> b) -> b -> m a -> b
forall (t :: * -> *) a b.
FoldableWithKey t =>
(Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey Key m -> a -> b -> b
Key (IdentityT m) -> a -> b -> b
f b
z m a
m
instance FoldableWithKey1 m => FoldableWithKey1 (IdentityT m) where
foldMapWithKey1 :: (Key (IdentityT m) -> a -> m) -> IdentityT m a -> m
foldMapWithKey1 f :: Key (IdentityT m) -> a -> m
f (IdentityT m :: m a
m) = (Key m -> a -> m) -> m a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 Key m -> a -> m
Key (IdentityT m) -> a -> m
f m a
m
instance TraversableWithKey m => TraversableWithKey (IdentityT m) where
traverseWithKey :: (Key (IdentityT m) -> a -> f b)
-> IdentityT m a -> f (IdentityT m b)
traverseWithKey f :: Key (IdentityT m) -> a -> f b
f (IdentityT a :: m a
a) = m b -> IdentityT m b
forall k (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT (m b -> IdentityT m b) -> f (m b) -> f (IdentityT m b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key m -> a -> f b) -> m a -> f (m b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey Key m -> a -> f b
Key (IdentityT m) -> a -> f b
f m a
a
instance TraversableWithKey1 m => TraversableWithKey1 (IdentityT m) where
traverseWithKey1 :: (Key (IdentityT m) -> a -> f b)
-> IdentityT m a -> f (IdentityT m b)
traverseWithKey1 f :: Key (IdentityT m) -> a -> f b
f (IdentityT a :: m a
a) = m b -> IdentityT m b
forall k (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT (m b -> IdentityT m b) -> f (m b) -> f (IdentityT m b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key m -> a -> f b) -> m a -> f (m b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 Key m -> a -> f b
Key (IdentityT m) -> a -> f b
f m a
a
type instance Key ((->)a) = a
instance Keyed ((->)a) where
mapWithKey :: (Key ((->) a) -> a -> b) -> (a -> a) -> a -> b
mapWithKey = (Key ((->) a) -> a -> b) -> (a -> a) -> a -> b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
instance Zip ((->)a) where
zipWith :: (a -> b -> c) -> (a -> a) -> (a -> b) -> a -> c
zipWith f :: a -> b -> c
f g :: a -> a
g h :: a -> b
h a :: a
a = a -> b -> c
f (a -> a
g a
a) (a -> b
h a
a)
instance ZipWithKey ((->)a) where
zipWithKey :: (Key ((->) a) -> a -> b -> c) -> (a -> a) -> (a -> b) -> a -> c
zipWithKey f :: Key ((->) a) -> a -> b -> c
f g :: a -> a
g h :: a -> b
h a :: a
a = Key ((->) a) -> a -> b -> c
f a
Key ((->) a)
a (a -> a
g a
a) (a -> b
h a
a)
instance Indexable ((->)a) where
index :: (a -> a) -> Key ((->) a) -> a
index = (a -> a) -> Key ((->) a) -> a
forall a. a -> a
id
instance Lookup ((->)a) where
lookup :: Key ((->) a) -> (a -> a) -> Maybe a
lookup i :: Key ((->) a)
i f :: a -> a
f = a -> Maybe a
forall a. a -> Maybe a
Just (a -> a
f a
Key ((->) a)
i)
type instance Key (ReaderT e m) = (e, Key m)
instance Zip m => Zip (ReaderT e m) where
zipWith :: (a -> b -> c) -> ReaderT e m a -> ReaderT e m b -> ReaderT e m c
zipWith f :: a -> b -> c
f (ReaderT m :: e -> m a
m) (ReaderT n :: e -> m b
n) = (e -> m c) -> ReaderT e m c
forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT ((e -> m c) -> ReaderT e m c) -> (e -> m c) -> ReaderT e m c
forall a b. (a -> b) -> a -> b
$ \a :: e
a ->
(a -> b -> c) -> m a -> m b -> m c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
f (e -> m a
m e
a) (e -> m b
n e
a)
instance ZipWithKey m => ZipWithKey (ReaderT e m) where
zipWithKey :: (Key (ReaderT e m) -> a -> b -> c)
-> ReaderT e m a -> ReaderT e m b -> ReaderT e m c
zipWithKey f :: Key (ReaderT e m) -> a -> b -> c
f (ReaderT m :: e -> m a
m) (ReaderT n :: e -> m b
n) = (e -> m c) -> ReaderT e m c
forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT ((e -> m c) -> ReaderT e m c) -> (e -> m c) -> ReaderT e m c
forall a b. (a -> b) -> a -> b
$ \a :: e
a ->
(Key m -> a -> b -> c) -> m a -> m b -> m c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey ((e, Key m) -> a -> b -> c
Key (ReaderT e m) -> a -> b -> c
f ((e, Key m) -> a -> b -> c)
-> (Key m -> (e, Key m)) -> Key m -> a -> b -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,) e
a) (e -> m a
m e
a) (e -> m b
n e
a)
instance Keyed m => Keyed (ReaderT e m) where
mapWithKey :: (Key (ReaderT e m) -> a -> b) -> ReaderT e m a -> ReaderT e m b
mapWithKey f :: Key (ReaderT e m) -> a -> b
f (ReaderT m :: e -> m a
m) = (e -> m b) -> ReaderT e m b
forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT ((e -> m b) -> ReaderT e m b) -> (e -> m b) -> ReaderT e m b
forall a b. (a -> b) -> a -> b
$ \k :: e
k -> (Key m -> a -> b) -> m a -> m b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey ((e, Key m) -> a -> b
Key (ReaderT e m) -> a -> b
f ((e, Key m) -> a -> b) -> (Key m -> (e, Key m)) -> Key m -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,) e
k) (e -> m a
m e
k)
instance Indexable m => Indexable (ReaderT e m) where
index :: ReaderT e m a -> Key (ReaderT e m) -> a
index (ReaderT f :: e -> m a
f) (e,k) = m a -> Key m -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index (e -> m a
f e
e) Key m
k
instance Lookup m => Lookup (ReaderT e m) where
lookup :: Key (ReaderT e m) -> ReaderT e m a -> Maybe a
lookup (e,k) (ReaderT f :: e -> m a
f) = Key m -> m a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key m
k (e -> m a
f e
e)
type instance Key (TracedT s w) = (s, Key w)
instance Zip w => Zip (TracedT s w) where
zipWith :: (a -> b -> c) -> TracedT s w a -> TracedT s w b -> TracedT s w c
zipWith f :: a -> b -> c
f (TracedT u :: w (s -> a)
u) (TracedT v :: w (s -> b)
v) = w (s -> c) -> TracedT s w c
forall m (w :: * -> *) a. w (m -> a) -> TracedT m w a
TracedT (w (s -> c) -> TracedT s w c) -> w (s -> c) -> TracedT s w c
forall a b. (a -> b) -> a -> b
$
((s -> a) -> (s -> b) -> s -> c)
-> w (s -> a) -> w (s -> b) -> w (s -> c)
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith (\a :: s -> a
a b :: s -> b
b s :: s
s -> a -> b -> c
f (s -> a
a s
s) (s -> b
b s
s)) w (s -> a)
u w (s -> b)
v
instance ZipWithKey w => ZipWithKey (TracedT s w) where
zipWithKey :: (Key (TracedT s w) -> a -> b -> c)
-> TracedT s w a -> TracedT s w b -> TracedT s w c
zipWithKey f :: Key (TracedT s w) -> a -> b -> c
f (TracedT u :: w (s -> a)
u) (TracedT v :: w (s -> b)
v) = w (s -> c) -> TracedT s w c
forall m (w :: * -> *) a. w (m -> a) -> TracedT m w a
TracedT (w (s -> c) -> TracedT s w c) -> w (s -> c) -> TracedT s w c
forall a b. (a -> b) -> a -> b
$
(Key w -> (s -> a) -> (s -> b) -> s -> c)
-> w (s -> a) -> w (s -> b) -> w (s -> c)
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey (\k :: Key w
k a :: s -> a
a b :: s -> b
b s :: s
s -> Key (TracedT s w) -> a -> b -> c
f (s
s, Key w
k) (s -> a
a s
s) (s -> b
b s
s)) w (s -> a)
u w (s -> b)
v
instance Keyed w => Keyed (TracedT s w) where
mapWithKey :: (Key (TracedT s w) -> a -> b) -> TracedT s w a -> TracedT s w b
mapWithKey f :: Key (TracedT s w) -> a -> b
f = w (s -> b) -> TracedT s w b
forall m (w :: * -> *) a. w (m -> a) -> TracedT m w a
TracedT (w (s -> b) -> TracedT s w b)
-> (TracedT s w a -> w (s -> b)) -> TracedT s w a -> TracedT s w b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key w -> (s -> a) -> s -> b) -> w (s -> a) -> w (s -> b)
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (\k' :: Key w
k' g :: s -> a
g k :: s
k -> Key (TracedT s w) -> a -> b
f (s
k, Key w
k') (s -> a
g s
k)) (w (s -> a) -> w (s -> b))
-> (TracedT s w a -> w (s -> a)) -> TracedT s w a -> w (s -> b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TracedT s w a -> w (s -> a)
forall m (w :: * -> *) a. TracedT m w a -> w (m -> a)
runTracedT
instance Indexable w => Indexable (TracedT s w) where
index :: TracedT s w a -> Key (TracedT s w) -> a
index (TracedT w :: w (s -> a)
w) (e,k) = w (s -> a) -> Key w -> s -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index w (s -> a)
w Key w
k s
e
instance Lookup w => Lookup (TracedT s w) where
lookup :: Key (TracedT s w) -> TracedT s w a -> Maybe a
lookup (e,k) (TracedT w :: w (s -> a)
w) = ((s -> a) -> s -> a
forall a b. (a -> b) -> a -> b
$ s
e) ((s -> a) -> a) -> Maybe (s -> a) -> Maybe a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key w -> w (s -> a) -> Maybe (s -> a)
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key w
k w (s -> a)
w
type instance Key IntMap = Int
instance Zip IntMap where
zipWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
zipWith = (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
forall a b c. (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
IntMap.intersectionWith
instance ZipWithKey IntMap where
zipWithKey :: (Key IntMap -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
zipWithKey = (Key IntMap -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
forall a b c.
(Int -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
IntMap.intersectionWithKey
instance Keyed IntMap where
mapWithKey :: (Key IntMap -> a -> b) -> IntMap a -> IntMap b
mapWithKey = (Key IntMap -> a -> b) -> IntMap a -> IntMap b
forall a b. (Int -> a -> b) -> IntMap a -> IntMap b
IntMap.mapWithKey
instance FoldableWithKey IntMap where
#if MIN_VERSION_containers(0,5,0)
foldrWithKey :: (Key IntMap -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey = (Key IntMap -> a -> b -> b) -> b -> IntMap a -> b
forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
IntMap.foldrWithKey
#else
foldrWithKey = IntMap.foldWithKey
#endif
instance TraversableWithKey IntMap where
traverseWithKey :: (Key IntMap -> a -> f b) -> IntMap a -> f (IntMap b)
traverseWithKey f :: Key IntMap -> a -> f b
f = ([(Int, b)] -> IntMap b) -> f [(Int, b)] -> f (IntMap b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [(Int, b)] -> IntMap b
forall a. [(Int, a)] -> IntMap a
IntMap.fromDistinctAscList (f [(Int, b)] -> f (IntMap b))
-> (IntMap a -> f [(Int, b)]) -> IntMap a -> f (IntMap b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Int, a) -> f (Int, b)) -> [(Int, a)] -> f [(Int, b)]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (\(k :: Int
k, v :: a
v) -> (,) Int
k (b -> (Int, b)) -> f b -> f (Int, b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key IntMap -> a -> f b
f Int
Key IntMap
k a
v) ([(Int, a)] -> f [(Int, b)])
-> (IntMap a -> [(Int, a)]) -> IntMap a -> f [(Int, b)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
IntMap.toAscList
instance Indexable IntMap where
index :: IntMap a -> Key IntMap -> a
index = IntMap a -> Key IntMap -> a
forall a. IntMap a -> Int -> a
(IntMap.!)
instance Lookup IntMap where
lookup :: Key IntMap -> IntMap a -> Maybe a
lookup = Key IntMap -> IntMap a -> Maybe a
forall a. Int -> IntMap a -> Maybe a
IntMap.lookup
instance Adjustable IntMap where
adjust :: (a -> a) -> Key IntMap -> IntMap a -> IntMap a
adjust = (a -> a) -> Key IntMap -> IntMap a -> IntMap a
forall a. (a -> a) -> Int -> IntMap a -> IntMap a
IntMap.adjust
type instance Key (Compose f g) = (Key f, Key g)
instance (Zip f, Zip g) => Zip (Compose f g) where
zipWith :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c
zipWith f :: a -> b -> c
f (Compose a :: f (g a)
a) (Compose b :: f (g b)
b) = f (g c) -> Compose f g c
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g c) -> Compose f g c) -> f (g c) -> Compose f g c
forall a b. (a -> b) -> a -> b
$ (g a -> g b -> g c) -> f (g a) -> f (g b) -> f (g c)
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith ((a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
f) f (g a)
a f (g b)
b
instance (ZipWithKey f, ZipWithKey g) => ZipWithKey (Compose f g) where
zipWithKey :: (Key (Compose f g) -> a -> b -> c)
-> Compose f g a -> Compose f g b -> Compose f g c
zipWithKey f :: Key (Compose f g) -> a -> b -> c
f (Compose a :: f (g a)
a) (Compose b :: f (g b)
b) = f (g c) -> Compose f g c
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g c) -> Compose f g c) -> f (g c) -> Compose f g c
forall a b. (a -> b) -> a -> b
$
(Key f -> g a -> g b -> g c) -> f (g a) -> f (g b) -> f (g c)
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey ((Key g -> a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey ((Key g -> a -> b -> c) -> g a -> g b -> g c)
-> (Key f -> Key g -> a -> b -> c) -> Key f -> g a -> g b -> g c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Key f, Key g) -> a -> b -> c)
-> (Key g -> (Key f, Key g)) -> Key g -> a -> b -> c
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Key f, Key g) -> a -> b -> c
Key (Compose f g) -> a -> b -> c
f ((Key g -> (Key f, Key g)) -> Key g -> a -> b -> c)
-> (Key f -> Key g -> (Key f, Key g))
-> Key f
-> Key g
-> a
-> b
-> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,)) f (g a)
a f (g b)
b
instance (Keyed f, Keyed g) => Keyed (Compose f g) where
mapWithKey :: (Key (Compose f g) -> a -> b) -> Compose f g a -> Compose f g b
mapWithKey f :: Key (Compose f g) -> a -> b
f = f (g b) -> Compose f g b
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g b) -> Compose f g b)
-> (Compose f g a -> f (g b)) -> Compose f g a -> Compose f g b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key f -> g a -> g b) -> f (g a) -> f (g b)
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (\k :: Key f
k -> (Key g -> a -> b) -> g a -> g b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey ((Key f, Key g) -> a -> b
Key (Compose f g) -> a -> b
f ((Key f, Key g) -> a -> b)
-> (Key g -> (Key f, Key g)) -> Key g -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,) Key f
k)) (f (g a) -> f (g b))
-> (Compose f g a -> f (g a)) -> Compose f g a -> f (g b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose f g a -> f (g a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose
instance (Indexable f, Indexable g) => Indexable (Compose f g) where
index :: Compose f g a -> Key (Compose f g) -> a
index (Compose fg :: f (g a)
fg) (i,j) = g a -> Key g -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index (f (g a) -> Key f -> g a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index f (g a)
fg Key f
i) Key g
j
instance (Lookup f, Lookup g) => Lookup (Compose f g) where
lookup :: Key (Compose f g) -> Compose f g a -> Maybe a
lookup (i,j) (Compose fg :: f (g a)
fg) = Key f -> f (g a) -> Maybe (g a)
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key f
i f (g a)
fg Maybe (g a) -> (g a -> Maybe a) -> Maybe a
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Key g -> g a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key g
j
instance (FoldableWithKey f, FoldableWithKey m) => FoldableWithKey (Compose f m) where
foldMapWithKey :: (Key (Compose f m) -> a -> m) -> Compose f m a -> m
foldMapWithKey f :: Key (Compose f m) -> a -> m
f = (Key f -> m a -> m) -> f (m a) -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (\k :: Key f
k -> (Key m -> a -> m) -> m a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey ((Key f, Key m) -> a -> m
Key (Compose f m) -> a -> m
f ((Key f, Key m) -> a -> m)
-> (Key m -> (Key f, Key m)) -> Key m -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,) Key f
k)) (f (m a) -> m) -> (Compose f m a -> f (m a)) -> Compose f m a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose f m a -> f (m a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose
instance (FoldableWithKey1 f, FoldableWithKey1 m) => FoldableWithKey1 (Compose f m) where
foldMapWithKey1 :: (Key (Compose f m) -> a -> m) -> Compose f m a -> m
foldMapWithKey1 f :: Key (Compose f m) -> a -> m
f = (Key f -> m a -> m) -> f (m a) -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 (\k :: Key f
k -> (Key m -> a -> m) -> m a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 ((Key f, Key m) -> a -> m
Key (Compose f m) -> a -> m
f ((Key f, Key m) -> a -> m)
-> (Key m -> (Key f, Key m)) -> Key m -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,) Key f
k)) (f (m a) -> m) -> (Compose f m a -> f (m a)) -> Compose f m a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose f m a -> f (m a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose
instance (TraversableWithKey f, TraversableWithKey m) => TraversableWithKey (Compose f m) where
traverseWithKey :: (Key (Compose f m) -> a -> f b)
-> Compose f m a -> f (Compose f m b)
traverseWithKey f :: Key (Compose f m) -> a -> f b
f = (f (m b) -> Compose f m b) -> f (f (m b)) -> f (Compose f m b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f (m b) -> Compose f m b
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (f (m b)) -> f (Compose f m b))
-> (Compose f m a -> f (f (m b)))
-> Compose f m a
-> f (Compose f m b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key f -> m a -> f (m b)) -> f (m a) -> f (f (m b))
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (\k :: Key f
k -> (Key m -> a -> f b) -> m a -> f (m b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey ((Key f, Key m) -> a -> f b
Key (Compose f m) -> a -> f b
f ((Key f, Key m) -> a -> f b)
-> (Key m -> (Key f, Key m)) -> Key m -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,) Key f
k)) (f (m a) -> f (f (m b)))
-> (Compose f m a -> f (m a)) -> Compose f m a -> f (f (m b))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose f m a -> f (m a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose
instance (TraversableWithKey1 f, TraversableWithKey1 m) => TraversableWithKey1 (Compose f m) where
traverseWithKey1 :: (Key (Compose f m) -> a -> f b)
-> Compose f m a -> f (Compose f m b)
traverseWithKey1 f :: Key (Compose f m) -> a -> f b
f = (f (m b) -> Compose f m b) -> f (f (m b)) -> f (Compose f m b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f (m b) -> Compose f m b
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (f (m b)) -> f (Compose f m b))
-> (Compose f m a -> f (f (m b)))
-> Compose f m a
-> f (Compose f m b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key f -> m a -> f (m b)) -> f (m a) -> f (f (m b))
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (\k :: Key f
k -> (Key m -> a -> f b) -> m a -> f (m b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 ((Key f, Key m) -> a -> f b
Key (Compose f m) -> a -> f b
f ((Key f, Key m) -> a -> f b)
-> (Key m -> (Key f, Key m)) -> Key m -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,) Key f
k)) (f (m a) -> f (f (m b)))
-> (Compose f m a -> f (m a)) -> Compose f m a -> f (f (m b))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose f m a -> f (m a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose
type instance Key [] = Int
instance Zip [] where
zip :: [a] -> [b] -> [(a, b)]
zip = [a] -> [b] -> [(a, b)]
forall a b. [a] -> [b] -> [(a, b)]
List.zip
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith = (a -> b -> c) -> [a] -> [b] -> [c]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
List.zipWith
instance ZipWithKey [] where
zipWithKey :: (Key [] -> a -> b -> c) -> [a] -> [b] -> [c]
zipWithKey f :: Key [] -> a -> b -> c
f = Int -> [a] -> [b] -> [c]
go 0 where
go :: Int -> [a] -> [b] -> [c]
go _ [] _ = []
go _ _ [] = []
go n :: Int
n (x :: a
x:xs :: [a]
xs) (y :: b
y:ys :: [b]
ys) = Int
n' Int -> [c] -> [c]
forall a b. a -> b -> b
`seq` Key [] -> a -> b -> c
f Int
Key []
n a
x b
y c -> [c] -> [c]
forall a. a -> [a] -> [a]
: Int -> [a] -> [b] -> [c]
go Int
n' [a]
xs [b]
ys
where n' :: Int
n' = Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1
instance Keyed [] where
mapWithKey :: (Key [] -> a -> b) -> [a] -> [b]
mapWithKey f :: Key [] -> a -> b
f xs0 :: [a]
xs0 = [a] -> Int -> [b]
go [a]
xs0 0 where
go :: [a] -> Int -> [b]
go [] _ = []
go (x :: a
x:xs :: [a]
xs) n :: Int
n = Key [] -> a -> b
f Int
Key []
n a
x b -> [b] -> [b]
forall a. a -> [a] -> [a]
: ([a] -> Int -> [b]
go [a]
xs (Int -> [b]) -> Int -> [b]
forall a b. (a -> b) -> a -> b
$! (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1))
instance FoldableWithKey [] where
foldrWithKey :: (Key [] -> a -> b -> b) -> b -> [a] -> b
foldrWithKey f :: Key [] -> a -> b -> b
f z0 :: b
z0 xs0 :: [a]
xs0 = b -> [a] -> Int -> b
go b
z0 [a]
xs0 0 where
go :: b -> [a] -> Int -> b
go z :: b
z [] _ = b
z
go z :: b
z (x :: a
x:xs :: [a]
xs) n :: Int
n = Key [] -> a -> b -> b
f Int
Key []
n a
x (b -> [a] -> Int -> b
go b
z [a]
xs (Int -> b) -> Int -> b
forall a b. (a -> b) -> a -> b
$! (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1))
instance TraversableWithKey [] where
traverseWithKey :: (Key [] -> a -> f b) -> [a] -> f [b]
traverseWithKey f :: Key [] -> a -> f b
f xs0 :: [a]
xs0 = [a] -> Int -> f [b]
go [a]
xs0 0 where
go :: [a] -> Int -> f [b]
go [] _ = [b] -> f [b]
forall (f :: * -> *) a. Applicative f => a -> f a
pure []
go (x :: a
x:xs :: [a]
xs) n :: Int
n = (:) (b -> [b] -> [b]) -> f b -> f ([b] -> [b])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key [] -> a -> f b
f Int
Key []
n a
x f ([b] -> [b]) -> f [b] -> f [b]
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ([a] -> Int -> f [b]
go [a]
xs (Int -> f [b]) -> Int -> f [b]
forall a b. (a -> b) -> a -> b
$! (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1))
instance Indexable [] where
index :: [a] -> Key [] -> a
index = [a] -> Key [] -> a
forall a. [a] -> Int -> a
(!!)
instance Lookup [] where
lookup :: Key [] -> [a] -> Maybe a
lookup = ([a] -> Maybe a) -> ([a] -> [a]) -> [a] -> Maybe a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [a] -> Maybe a
forall a. [a] -> Maybe a
listToMaybe (([a] -> [a]) -> [a] -> Maybe a)
-> (Int -> [a] -> [a]) -> Int -> [a] -> Maybe a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
drop
instance Adjustable [] where
adjust :: (a -> a) -> Key [] -> [a] -> [a]
adjust f :: a -> a
f 0 (x :: a
x:xs :: [a]
xs) = a -> a
f a
x a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a]
xs
adjust _ _ [] = []
adjust f :: a -> a
f n :: Key []
n (x :: a
x:xs :: [a]
xs) = Int
n' Int -> [a] -> [a]
forall a b. a -> b -> b
`seq` a
x a -> [a] -> [a]
forall a. a -> [a] -> [a]
: (a -> a) -> Key [] -> [a] -> [a]
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Int
Key []
n' [a]
xs where n' :: Int
n' = Int
Key []
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1
type instance Key ZipList = Int
instance Zip ZipList where
zip :: ZipList a -> ZipList b -> ZipList (a, b)
zip (ZipList xs :: [a]
xs) (ZipList ys :: [b]
ys) = [(a, b)] -> ZipList (a, b)
forall a. [a] -> ZipList a
ZipList ([a] -> [b] -> [(a, b)]
forall (f :: * -> *) a b. Zip f => f a -> f b -> f (a, b)
zip [a]
xs [b]
ys)
zipWith :: (a -> b -> c) -> ZipList a -> ZipList b -> ZipList c
zipWith f :: a -> b -> c
f (ZipList xs :: [a]
xs) (ZipList ys :: [b]
ys) = [c] -> ZipList c
forall a. [a] -> ZipList a
ZipList ((a -> b -> c) -> [a] -> [b] -> [c]
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
f [a]
xs [b]
ys)
instance ZipWithKey ZipList where
zipWithKey :: (Key ZipList -> a -> b -> c) -> ZipList a -> ZipList b -> ZipList c
zipWithKey f :: Key ZipList -> a -> b -> c
f (ZipList xs :: [a]
xs) (ZipList ys :: [b]
ys) = [c] -> ZipList c
forall a. [a] -> ZipList a
ZipList ((Key [] -> a -> b -> c) -> [a] -> [b] -> [c]
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey Key [] -> a -> b -> c
Key ZipList -> a -> b -> c
f [a]
xs [b]
ys)
instance Keyed ZipList where
mapWithKey :: (Key ZipList -> a -> b) -> ZipList a -> ZipList b
mapWithKey f :: Key ZipList -> a -> b
f = [b] -> ZipList b
forall a. [a] -> ZipList a
ZipList ([b] -> ZipList b) -> (ZipList a -> [b]) -> ZipList a -> ZipList b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key [] -> a -> b) -> [a] -> [b]
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey Key [] -> a -> b
Key ZipList -> a -> b
f ([a] -> [b]) -> (ZipList a -> [a]) -> ZipList a -> [b]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ZipList a -> [a]
forall a. ZipList a -> [a]
getZipList
instance FoldableWithKey ZipList where
foldrWithKey :: (Key ZipList -> a -> b -> b) -> b -> ZipList a -> b
foldrWithKey f :: Key ZipList -> a -> b -> b
f z :: b
z = (Key [] -> a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
FoldableWithKey t =>
(Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey Key [] -> a -> b -> b
Key ZipList -> a -> b -> b
f b
z ([a] -> b) -> (ZipList a -> [a]) -> ZipList a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ZipList a -> [a]
forall a. ZipList a -> [a]
getZipList
instance TraversableWithKey ZipList where
traverseWithKey :: (Key ZipList -> a -> f b) -> ZipList a -> f (ZipList b)
traverseWithKey f :: Key ZipList -> a -> f b
f = ([b] -> ZipList b) -> f [b] -> f (ZipList b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [b] -> ZipList b
forall a. [a] -> ZipList a
ZipList (f [b] -> f (ZipList b))
-> (ZipList a -> f [b]) -> ZipList a -> f (ZipList b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Key [] -> a -> f b) -> [a] -> f [b]
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey Key [] -> a -> f b
Key ZipList -> a -> f b
f ([a] -> f [b]) -> (ZipList a -> [a]) -> ZipList a -> f [b]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ZipList a -> [a]
forall a. ZipList a -> [a]
getZipList
instance Indexable ZipList where
index :: ZipList a -> Key ZipList -> a
index (ZipList xs :: [a]
xs) i :: Key ZipList
i = [a] -> Key [] -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index [a]
xs Key []
Key ZipList
i
instance Lookup ZipList where
lookup :: Key ZipList -> ZipList a -> Maybe a
lookup i :: Key ZipList
i = Key [] -> [a] -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key []
Key ZipList
i ([a] -> Maybe a) -> (ZipList a -> [a]) -> ZipList a -> Maybe a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ZipList a -> [a]
forall a. ZipList a -> [a]
getZipList
instance Adjustable ZipList where
adjust :: (a -> a) -> Key ZipList -> ZipList a -> ZipList a
adjust f :: a -> a
f i :: Key ZipList
i = [a] -> ZipList a
forall a. [a] -> ZipList a
ZipList ([a] -> ZipList a) -> (ZipList a -> [a]) -> ZipList a -> ZipList a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> a) -> Key [] -> [a] -> [a]
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Key []
Key ZipList
i ([a] -> [a]) -> (ZipList a -> [a]) -> ZipList a -> [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ZipList a -> [a]
forall a. ZipList a -> [a]
getZipList
instance Zip NonEmpty where
zipWith :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c
zipWith = (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c
forall a b c.
(a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c
NonEmpty.zipWith
instance ZipWithKey NonEmpty where
zipWithKey :: (Key NonEmpty -> a -> b -> c)
-> NonEmpty a -> NonEmpty b -> NonEmpty c
zipWithKey f :: Key NonEmpty -> a -> b -> c
f (a :: a
a:|as :: [a]
as) (b :: b
b:|bs :: [b]
bs) = Key NonEmpty -> a -> b -> c
f 0 a
a b
b c -> [c] -> NonEmpty c
forall a. a -> [a] -> NonEmpty a
:| (Key [] -> a -> b -> c) -> [a] -> [b] -> [c]
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey (Int -> a -> b -> c
Key NonEmpty -> a -> b -> c
f (Int -> a -> b -> c) -> (Int -> Int) -> Int -> a -> b -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Int -> Int
forall a. Num a => a -> a -> a
+1)) [a]
as [b]
bs
instance Keyed NonEmpty where
mapWithKey :: (Key NonEmpty -> a -> b) -> NonEmpty a -> NonEmpty b
mapWithKey f :: Key NonEmpty -> a -> b
f (a :: a
a:|as :: [a]
as) = Key NonEmpty -> a -> b
f 0 a
a b -> [b] -> NonEmpty b
forall a. a -> [a] -> NonEmpty a
:| (Key [] -> a -> b) -> [a] -> [b]
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (Int -> a -> b
Key NonEmpty -> a -> b
f (Int -> a -> b) -> (Int -> Int) -> Int -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Int -> Int
forall a. Num a => a -> a -> a
+1)) [a]
as
instance FoldableWithKey NonEmpty where
foldrWithKey :: (Key NonEmpty -> a -> b -> b) -> b -> NonEmpty a -> b
foldrWithKey f :: Key NonEmpty -> a -> b -> b
f z :: b
z (x :: a
x:|xs :: [a]
xs) = Key NonEmpty -> a -> b -> b
f 0 a
x ((Key [] -> a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
FoldableWithKey t =>
(Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey (Int -> a -> b -> b
Key NonEmpty -> a -> b -> b
f (Int -> a -> b -> b) -> (Int -> Int) -> Int -> a -> b -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Int -> Int
forall a. Num a => a -> a -> a
+1)) b
z [a]
xs)
instance TraversableWithKey NonEmpty where
traverseWithKey :: (Key NonEmpty -> a -> f b) -> NonEmpty a -> f (NonEmpty b)
traverseWithKey f :: Key NonEmpty -> a -> f b
f (x :: a
x :| xs :: [a]
xs) = b -> [b] -> NonEmpty b
forall a. a -> [a] -> NonEmpty a
(:|) (b -> [b] -> NonEmpty b) -> f b -> f ([b] -> NonEmpty b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key NonEmpty -> a -> f b
f 0 a
x f ([b] -> NonEmpty b) -> f [b] -> f (NonEmpty b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Key [] -> a -> f b) -> [a] -> f [b]
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (Int -> a -> f b
Key NonEmpty -> a -> f b
f (Int -> a -> f b) -> (Int -> Int) -> Int -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Int -> Int
forall a. Num a => a -> a -> a
+1)) [a]
xs
instance Indexable NonEmpty where
index :: NonEmpty a -> Key NonEmpty -> a
index (x :: a
x:|_) 0 = a
x
index (_:|xs :: [a]
xs) i :: Key NonEmpty
i = [a]
xs [a] -> Int -> a
forall a. [a] -> Int -> a
!! (Int
Key NonEmpty
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1)
instance Lookup NonEmpty where
lookup :: Key NonEmpty -> NonEmpty a -> Maybe a
lookup 0 (x :: a
x:|_) = a -> Maybe a
forall a. a -> Maybe a
Just a
x
lookup n :: Key NonEmpty
n (_:|xs :: [a]
xs) = Key [] -> [a] -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup (Int
Key NonEmpty
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1) [a]
xs
instance Adjustable NonEmpty where
adjust :: (a -> a) -> Key NonEmpty -> NonEmpty a -> NonEmpty a
adjust f :: a -> a
f 0 (x :: a
x:|xs :: [a]
xs) = a -> a
f a
x a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:| [a]
xs
adjust f :: a -> a
f n :: Key NonEmpty
n (x :: a
x:|xs :: [a]
xs) = a
x a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:| (a -> a) -> Key [] -> [a] -> [a]
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f (Int
Key NonEmpty
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1) [a]
xs
instance FoldableWithKey1 NonEmpty where
foldMapWithKey1 :: (Key NonEmpty -> a -> m) -> NonEmpty a -> m
foldMapWithKey1 f :: Key NonEmpty -> a -> m
f (x :: a
x:|[]) = Key NonEmpty -> a -> m
f 0 a
x
foldMapWithKey1 f :: Key NonEmpty -> a -> m
f (x :: a
x:|(y :: a
y:ys :: [a]
ys)) = Key NonEmpty -> a -> m
f 0 a
x m -> m -> m
forall a. Semigroup a => a -> a -> a
<> (Key NonEmpty -> a -> m) -> NonEmpty a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 (Int -> a -> m
Key NonEmpty -> a -> m
f (Int -> a -> m) -> (Int -> Int) -> Int -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Int -> Int
forall a. Num a => a -> a -> a
+1)) (a
ya -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:|[a]
ys)
instance TraversableWithKey1 NonEmpty where
traverseWithKey1 :: (Key NonEmpty -> a -> f b) -> NonEmpty a -> f (NonEmpty b)
traverseWithKey1 f :: Key NonEmpty -> a -> f b
f (x :: a
x:|[]) = (b -> [b] -> NonEmpty b
forall a. a -> [a] -> NonEmpty a
:|[]) (b -> NonEmpty b) -> f b -> f (NonEmpty b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key NonEmpty -> a -> f b
f 0 a
x
traverseWithKey1 f :: Key NonEmpty -> a -> f b
f (x :: a
x:|(y :: a
y:ys :: [a]
ys)) = (\w :: b
w (z :: b
z:|zs :: [b]
zs) -> b
w b -> [b] -> NonEmpty b
forall a. a -> [a] -> NonEmpty a
:| (b
zb -> [b] -> [b]
forall a. a -> [a] -> [a]
:[b]
zs)) (b -> NonEmpty b -> NonEmpty b)
-> f b -> f (NonEmpty b -> NonEmpty b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key NonEmpty -> a -> f b
f 0 a
x f (NonEmpty b -> NonEmpty b) -> f (NonEmpty b) -> f (NonEmpty b)
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> (Key NonEmpty -> a -> f b) -> NonEmpty a -> f (NonEmpty b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (Int -> a -> f b
Key NonEmpty -> a -> f b
f (Int -> a -> f b) -> (Int -> Int) -> Int -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Int -> Int
forall a. Num a => a -> a -> a
+1)) (a
y a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:| [a]
ys)
type instance Key Seq = Int
instance Indexable Seq where
index :: Seq a -> Key Seq -> a
index = Seq a -> Key Seq -> a
forall a. Seq a -> Int -> a
Seq.index
instance Lookup Seq where
lookup :: Key Seq -> Seq a -> Maybe a
lookup i :: Key Seq
i s :: Seq a
s =
#if MIN_VERSION_containers(0,5,8)
Int -> Seq a -> Maybe a
forall a. Int -> Seq a -> Maybe a
Seq.lookup Int
Key Seq
i Seq a
s
#else
case viewl (Seq.drop i s) of
EmptyL -> Nothing
a Seq.:< _ -> Just a
#endif
instance Zip Seq where
zip :: Seq a -> Seq b -> Seq (a, b)
zip = Seq a -> Seq b -> Seq (a, b)
forall a b. Seq a -> Seq b -> Seq (a, b)
Seq.zip
zipWith :: (a -> b -> c) -> Seq a -> Seq b -> Seq c
zipWith = (a -> b -> c) -> Seq a -> Seq b -> Seq c
forall a b c. (a -> b -> c) -> Seq a -> Seq b -> Seq c
Seq.zipWith
instance ZipWithKey Seq where
zipWithKey :: (Key Seq -> a -> b -> c) -> Seq a -> Seq b -> Seq c
zipWithKey f :: Key Seq -> a -> b -> c
f a :: Seq a
a b :: Seq b
b = ((b -> c) -> b -> c) -> Seq (b -> c) -> Seq b -> Seq c
forall a b c. (a -> b -> c) -> Seq a -> Seq b -> Seq c
Seq.zipWith (b -> c) -> b -> c
forall a. a -> a
id ((Int -> a -> b -> c) -> Seq a -> Seq (b -> c)
forall a b. (Int -> a -> b) -> Seq a -> Seq b
Seq.mapWithIndex Int -> a -> b -> c
Key Seq -> a -> b -> c
f Seq a
a) Seq b
b
instance Adjustable Seq where
adjust :: (a -> a) -> Key Seq -> Seq a -> Seq a
adjust f :: a -> a
f i :: Key Seq
i xs :: Seq a
xs =
#if MIN_VERSION_containers(0,5,8)
(a -> a) -> Int -> Seq a -> Seq a
forall a. (a -> a) -> Int -> Seq a -> Seq a
Seq.adjust' a -> a
f Int
Key Seq
i Seq a
xs
#else
case i `lookup` xs of
Nothing -> xs
Just x -> let !x' = f x
in Seq.update i x' xs
#endif
instance Keyed Seq where
mapWithKey :: (Key Seq -> a -> b) -> Seq a -> Seq b
mapWithKey = (Key Seq -> a -> b) -> Seq a -> Seq b
forall a b. (Int -> a -> b) -> Seq a -> Seq b
Seq.mapWithIndex
instance FoldableWithKey Seq where
foldrWithKey :: (Key Seq -> a -> b -> b) -> b -> Seq a -> b
foldrWithKey = (Key Seq -> a -> b -> b) -> b -> Seq a -> b
forall a b. (Int -> a -> b -> b) -> b -> Seq a -> b
Seq.foldrWithIndex
foldlWithKey :: (b -> Key Seq -> a -> b) -> b -> Seq a -> b
foldlWithKey = (b -> Key Seq -> a -> b) -> b -> Seq a -> b
forall b a. (b -> Int -> a -> b) -> b -> Seq a -> b
Seq.foldlWithIndex
#if MIN_VERSION_containers(0,5,8)
foldMapWithKey :: (Key Seq -> a -> m) -> Seq a -> m
foldMapWithKey = (Key Seq -> a -> m) -> Seq a -> m
forall m a. Monoid m => (Int -> a -> m) -> Seq a -> m
Seq.foldMapWithIndex
#endif
instance TraversableWithKey Seq where
traverseWithKey :: (Key Seq -> a -> f b) -> Seq a -> f (Seq b)
traverseWithKey f :: Key Seq -> a -> f b
f =
#if MIN_VERSION_containers(0,5,8)
(Int -> a -> f b) -> Seq a -> f (Seq b)
forall (f :: * -> *) a b.
Applicative f =>
(Int -> a -> f b) -> Seq a -> f (Seq b)
Seq.traverseWithIndex Int -> a -> f b
Key Seq -> a -> f b
f
#else
fmap Seq.fromList . traverseWithKey f . toList
#endif
type instance Key (Map k) = k
instance Ord k => Zip (Map k) where
zipWith :: (a -> b -> c) -> Map k a -> Map k b -> Map k c
zipWith = (a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
Map.intersectionWith
instance Ord k => ZipWithKey (Map k) where
zipWithKey :: (Key (Map k) -> a -> b -> c) -> Map k a -> Map k b -> Map k c
zipWithKey = (Key (Map k) -> a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
Map.intersectionWithKey
instance Keyed (Map k) where
mapWithKey :: (Key (Map k) -> a -> b) -> Map k a -> Map k b
mapWithKey = (Key (Map k) -> a -> b) -> Map k a -> Map k b
forall k a b. (k -> a -> b) -> Map k a -> Map k b
Map.mapWithKey
instance Ord k => Indexable (Map k) where
index :: Map k a -> Key (Map k) -> a
index = Map k a -> Key (Map k) -> a
forall k a. Ord k => Map k a -> k -> a
(Map.!)
instance Ord k => Lookup (Map k) where
lookup :: Key (Map k) -> Map k a -> Maybe a
lookup = Key (Map k) -> Map k a -> Maybe a
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup
instance FoldableWithKey (Map k) where
foldrWithKey :: (Key (Map k) -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey = (Key (Map k) -> a -> b -> b) -> b -> Map k a -> b
forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
Map.foldrWithKey
instance TraversableWithKey (Map k) where
traverseWithKey :: (Key (Map k) -> a -> f b) -> Map k a -> f (Map k b)
traverseWithKey f :: Key (Map k) -> a -> f b
f = ([(k, b)] -> Map k b) -> f [(k, b)] -> f (Map k b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [(k, b)] -> Map k b
forall k a. [(k, a)] -> Map k a
Map.fromDistinctAscList (f [(k, b)] -> f (Map k b))
-> (Map k a -> f [(k, b)]) -> Map k a -> f (Map k b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((k, a) -> f (k, b)) -> [(k, a)] -> f [(k, b)]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (\(k :: k
k, v :: a
v) -> (,) k
k (b -> (k, b)) -> f b -> f (k, b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key (Map k) -> a -> f b
f k
Key (Map k)
k a
v) ([(k, a)] -> f [(k, b)])
-> (Map k a -> [(k, a)]) -> Map k a -> f [(k, b)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Map k a -> [(k, a)]
forall k a. Map k a -> [(k, a)]
Map.toAscList
instance Ord k => Adjustable (Map k) where
adjust :: (a -> a) -> Key (Map k) -> Map k a -> Map k a
adjust = (a -> a) -> Key (Map k) -> Map k a -> Map k a
forall k a. Ord k => (a -> a) -> k -> Map k a -> Map k a
Map.adjust
type instance Key (Array i) = i
instance Ix i => Keyed (Array i) where
mapWithKey :: (Key (Array i) -> a -> b) -> Array i a -> Array i b
mapWithKey f :: Key (Array i) -> a -> b
f arr :: Array i a
arr = (i, i) -> [b] -> Array i b
forall i e. Ix i => (i, i) -> [e] -> Array i e
Array.listArray (Array i a -> (i, i)
forall i e. Array i e -> (i, i)
Array.bounds Array i a
arr) ([b] -> Array i b) -> [b] -> Array i b
forall a b. (a -> b) -> a -> b
$ ((i, a) -> b) -> [(i, a)] -> [b]
forall a b. (a -> b) -> [a] -> [b]
map ((i -> a -> b) -> (i, a) -> b
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry i -> a -> b
Key (Array i) -> a -> b
f) ([(i, a)] -> [b]) -> [(i, a)] -> [b]
forall a b. (a -> b) -> a -> b
$ Array i a -> [(i, a)]
forall i e. Ix i => Array i e -> [(i, e)]
Array.assocs Array i a
arr
instance Ix i => Indexable (Array i) where
index :: Array i a -> Key (Array i) -> a
index = Array i a -> Key (Array i) -> a
forall i e. Ix i => Array i e -> i -> e
(Array.!)
instance Ix i => Lookup (Array i) where
lookup :: Key (Array i) -> Array i a -> Maybe a
lookup i :: Key (Array i)
i arr :: Array i a
arr
| (i, i) -> i -> Bool
forall a. Ix a => (a, a) -> a -> Bool
inRange (Array i a -> (i, i)
forall i e. Array i e -> (i, i)
Array.bounds Array i a
arr) i
Key (Array i)
i = a -> Maybe a
forall a. a -> Maybe a
Just (Array i a
arr Array i a -> i -> a
forall i e. Ix i => Array i e -> i -> e
Array.! i
Key (Array i)
i)
| Bool
otherwise = Maybe a
forall a. Maybe a
Nothing
instance Ix i => FoldableWithKey (Array i) where
foldrWithKey :: (Key (Array i) -> a -> b -> b) -> b -> Array i a -> b
foldrWithKey f :: Key (Array i) -> a -> b -> b
f z :: b
z = ((i, a) -> b -> b) -> b -> [(i, a)] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Prelude.foldr ((i -> a -> b -> b) -> (i, a) -> b -> b
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry i -> a -> b -> b
Key (Array i) -> a -> b -> b
f) b
z ([(i, a)] -> b) -> (Array i a -> [(i, a)]) -> Array i a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array i a -> [(i, a)]
forall i e. Ix i => Array i e -> [(i, e)]
Array.assocs
instance Ix i => TraversableWithKey (Array i) where
traverseWithKey :: (Key (Array i) -> a -> f b) -> Array i a -> f (Array i b)
traverseWithKey f :: Key (Array i) -> a -> f b
f arr :: Array i a
arr = (i, i) -> [b] -> Array i b
forall i e. Ix i => (i, i) -> [e] -> Array i e
Array.listArray (Array i a -> (i, i)
forall i e. Array i e -> (i, i)
Array.bounds Array i a
arr) ([b] -> Array i b) -> f [b] -> f (Array i b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((i, a) -> f b) -> [(i, a)] -> f [b]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse ((i -> a -> f b) -> (i, a) -> f b
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry i -> a -> f b
Key (Array i) -> a -> f b
f) (Array i a -> [(i, a)]
forall i e. Ix i => Array i e -> [(i, e)]
Array.assocs Array i a
arr)
instance Ix i => Adjustable (Array i) where
adjust :: (a -> a) -> Key (Array i) -> Array i a -> Array i a
adjust f :: a -> a
f i :: Key (Array i)
i arr :: Array i a
arr = Array i a
arr Array i a -> [(i, a)] -> Array i a
forall i e. Ix i => Array i e -> [(i, e)] -> Array i e
Array.// [(i
Key (Array i)
i, a -> a
f (Array i a
arr Array i a -> i -> a
forall i e. Ix i => Array i e -> i -> e
Array.! i
Key (Array i)
i))]
replace :: Key (Array i) -> a -> Array i a -> Array i a
replace i :: Key (Array i)
i b :: a
b arr :: Array i a
arr = Array i a
arr Array i a -> [(i, a)] -> Array i a
forall i e. Ix i => Array i e -> [(i, e)] -> Array i e
Array.// [(i
Key (Array i)
i, a
b)]
type instance Key (Functor.Sum f g) = Either (Key f) (Key g)
instance (Keyed f, Keyed g) => Keyed (Functor.Sum f g) where
mapWithKey :: (Key (Sum f g) -> a -> b) -> Sum f g a -> Sum f g b
mapWithKey f :: Key (Sum f g) -> a -> b
f (Functor.InL a :: f a
a) = f b -> Sum f g b
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
Functor.InL ((Key f -> a -> b) -> f a -> f b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (Either (Key f) (Key g) -> a -> b
Key (Sum f g) -> a -> b
f (Either (Key f) (Key g) -> a -> b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a)
mapWithKey f :: Key (Sum f g) -> a -> b
f (Functor.InR b :: g a
b) = g b -> Sum f g b
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
Functor.InR ((Key g -> a -> b) -> g a -> g b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (Either (Key f) (Key g) -> a -> b
Key (Sum f g) -> a -> b
f (Either (Key f) (Key g) -> a -> b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b)
instance (Indexable f, Indexable g) => Indexable (Functor.Sum f g) where
index :: Sum f g a -> Key (Sum f g) -> a
index (Functor.InL a :: f a
a) (Left x) = f a -> Key f -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index f a
a Key f
x
index (Functor.InL _) (Right _) = [Char] -> a
forall a. HasCallStack => [Char] -> a
error "InL indexed with a Right key"
index (Functor.InR b :: g a
b) (Right y) = g a -> Key g -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index g a
b Key g
y
index (Functor.InR _) (Left _) = [Char] -> a
forall a. HasCallStack => [Char] -> a
error "InR indexed with a Left key"
instance (Lookup f, Lookup g) => Lookup (Functor.Sum f g) where
lookup :: Key (Sum f g) -> Sum f g a -> Maybe a
lookup (Left x) (Functor.InL a :: f a
a) = Key f -> f a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key f
x f a
a
lookup (Right y) (Functor.InR b :: g a
b) = Key g -> g a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key g
y g a
b
lookup _ _ = Maybe a
forall a. Maybe a
Nothing
instance (Adjustable f, Adjustable g) => Adjustable (Functor.Sum f g) where
adjust :: (a -> a) -> Key (Sum f g) -> Sum f g a -> Sum f g a
adjust f :: a -> a
f (Left x) (Functor.InL a :: f a
a) = f a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
Functor.InL ((a -> a) -> Key f -> f a -> f a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Key f
x f a
a)
adjust f :: a -> a
f (Right y) (Functor.InR b :: g a
b) = g a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
Functor.InR ((a -> a) -> Key g -> g a -> g a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Key g
y g a
b)
adjust _ _ x :: Sum f g a
x = Sum f g a
x
replace :: Key (Sum f g) -> a -> Sum f g a -> Sum f g a
replace (Left x) v :: a
v (Functor.InL a :: f a
a) = f a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
Functor.InL (Key f -> a -> f a -> f a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key f
x a
v f a
a)
replace (Right y) v :: a
v (Functor.InR b :: g a
b) = g a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
Functor.InR (Key g -> a -> g a -> g a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key g
y a
v g a
b)
replace _ _ x :: Sum f g a
x = Sum f g a
x
instance (FoldableWithKey f, FoldableWithKey g) => FoldableWithKey (Functor.Sum f g) where
foldMapWithKey :: (Key (Sum f g) -> a -> m) -> Sum f g a -> m
foldMapWithKey f :: Key (Sum f g) -> a -> m
f (Functor.InL a :: f a
a) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (Either (Key f) (Key g) -> a -> m
Key (Sum f g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a
foldMapWithKey f :: Key (Sum f g) -> a -> m
f (Functor.InR b :: g a
b) = (Key g -> a -> m) -> g a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (Either (Key f) (Key g) -> a -> m
Key (Sum f g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (FoldableWithKey1 f, FoldableWithKey1 g) => FoldableWithKey1 (Functor.Sum f g) where
foldMapWithKey1 :: (Key (Sum f g) -> a -> m) -> Sum f g a -> m
foldMapWithKey1 f :: Key (Sum f g) -> a -> m
f (Functor.InL a :: f a
a) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 (Either (Key f) (Key g) -> a -> m
Key (Sum f g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a
foldMapWithKey1 f :: Key (Sum f g) -> a -> m
f (Functor.InR b :: g a
b) = (Key g -> a -> m) -> g a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 (Either (Key f) (Key g) -> a -> m
Key (Sum f g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (TraversableWithKey f, TraversableWithKey g) => TraversableWithKey (Functor.Sum f g) where
traverseWithKey :: (Key (Sum f g) -> a -> f b) -> Sum f g a -> f (Sum f g b)
traverseWithKey f :: Key (Sum f g) -> a -> f b
f (Functor.InL a :: f a
a) = f b -> Sum f g b
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
Functor.InL (f b -> Sum f g b) -> f (f b) -> f (Sum f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (Either (Key f) (Key g) -> a -> f b
Key (Sum f g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a
traverseWithKey f :: Key (Sum f g) -> a -> f b
f (Functor.InR b :: g a
b) = g b -> Sum f g b
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
Functor.InR (g b -> Sum f g b) -> f (g b) -> f (Sum f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key g -> a -> f b) -> g a -> f (g b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (Either (Key f) (Key g) -> a -> f b
Key (Sum f g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (TraversableWithKey1 f, TraversableWithKey1 g) => TraversableWithKey1 (Functor.Sum f g) where
traverseWithKey1 :: (Key (Sum f g) -> a -> f b) -> Sum f g a -> f (Sum f g b)
traverseWithKey1 f :: Key (Sum f g) -> a -> f b
f (Functor.InL a :: f a
a) = f b -> Sum f g b
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
Functor.InL (f b -> Sum f g b) -> f (f b) -> f (Sum f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (Either (Key f) (Key g) -> a -> f b
Key (Sum f g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a
traverseWithKey1 f :: Key (Sum f g) -> a -> f b
f (Functor.InR b :: g a
b) = g b -> Sum f g b
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
Functor.InR (g b -> Sum f g b) -> f (g b) -> f (Sum f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key g -> a -> f b) -> g a -> f (g b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (Either (Key f) (Key g) -> a -> f b
Key (Sum f g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
type instance Key (Product f g) = Either (Key f) (Key g)
instance (Keyed f, Keyed g) => Keyed (Product f g) where
mapWithKey :: (Key (Product f g) -> a -> b) -> Product f g a -> Product f g b
mapWithKey f :: Key (Product f g) -> a -> b
f (Pair a :: f a
a b :: g a
b) = f b -> g b -> Product f g b
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((Key f -> a -> b) -> f a -> f b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (Either (Key f) (Key g) -> a -> b
Key (Product f g) -> a -> b
f (Either (Key f) (Key g) -> a -> b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a) ((Key g -> a -> b) -> g a -> g b
forall (f :: * -> *) a b.
Keyed f =>
(Key f -> a -> b) -> f a -> f b
mapWithKey (Either (Key f) (Key g) -> a -> b
Key (Product f g) -> a -> b
f (Either (Key f) (Key g) -> a -> b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b)
instance (Indexable f, Indexable g) => Indexable (Product f g) where
index :: Product f g a -> Key (Product f g) -> a
index (Pair a :: f a
a _) (Left i) = f a -> Key f -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index f a
a Key f
i
index (Pair _ b :: g a
b) (Right j) = g a -> Key g -> a
forall (f :: * -> *) a. Indexable f => f a -> Key f -> a
index g a
b Key g
j
instance (Lookup f, Lookup g) => Lookup (Product f g) where
lookup :: Key (Product f g) -> Product f g a -> Maybe a
lookup (Left i) (Pair a :: f a
a _) = Key f -> f a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key f
i f a
a
lookup (Right j) (Pair _ b :: g a
b) = Key g -> g a -> Maybe a
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup Key g
j g a
b
instance (Zip f, Zip g) => Zip (Product f g) where
zipWith :: (a -> b -> c) -> Product f g a -> Product f g b -> Product f g c
zipWith f :: a -> b -> c
f (Pair a :: f a
a b :: g a
b) (Pair c :: f b
c d :: g b
d) = f c -> g c -> Product f g c
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
f f a
a f b
c) ((a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> b -> c
f g a
b g b
d)
instance (ZipWithKey f, ZipWithKey g) => ZipWithKey (Product f g) where
zipWithKey :: (Key (Product f g) -> a -> b -> c)
-> Product f g a -> Product f g b -> Product f g c
zipWithKey f :: Key (Product f g) -> a -> b -> c
f (Pair a :: f a
a b :: g a
b) (Pair c :: f b
c d :: g b
d) = f c -> g c -> Product f g c
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((Key f -> a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey (Either (Key f) (Key g) -> a -> b -> c
Key (Product f g) -> a -> b -> c
f (Either (Key f) (Key g) -> a -> b -> c)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> b -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a f b
c) ((Key g -> a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
ZipWithKey f =>
(Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey (Either (Key f) (Key g) -> a -> b -> c
Key (Product f g) -> a -> b -> c
f (Either (Key f) (Key g) -> a -> b -> c)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> b -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b g b
d)
instance (FoldableWithKey f, FoldableWithKey g) => FoldableWithKey (Product f g) where
foldMapWithKey :: (Key (Product f g) -> a -> m) -> Product f g a -> m
foldMapWithKey f :: Key (Product f g) -> a -> m
f (Pair a :: f a
a b :: g a
b) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (Either (Key f) (Key g) -> a -> m
Key (Product f g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (Key g -> a -> m) -> g a -> m
forall (t :: * -> *) m a.
(FoldableWithKey t, Monoid m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey (Either (Key f) (Key g) -> a -> m
Key (Product f g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (FoldableWithKey1 f, FoldableWithKey1 g) => FoldableWithKey1 (Product f g) where
foldMapWithKey1 :: (Key (Product f g) -> a -> m) -> Product f g a -> m
foldMapWithKey1 f :: Key (Product f g) -> a -> m
f (Pair a :: f a
a b :: g a
b) = (Key f -> a -> m) -> f a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 (Either (Key f) (Key g) -> a -> m
Key (Product f g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a m -> m -> m
forall a. Semigroup a => a -> a -> a
<> (Key g -> a -> m) -> g a -> m
forall (t :: * -> *) m a.
(FoldableWithKey1 t, Semigroup m) =>
(Key t -> a -> m) -> t a -> m
foldMapWithKey1 (Either (Key f) (Key g) -> a -> m
Key (Product f g) -> a -> m
f (Either (Key f) (Key g) -> a -> m)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (TraversableWithKey f, TraversableWithKey g) => TraversableWithKey (Product f g) where
traverseWithKey :: (Key (Product f g) -> a -> f b)
-> Product f g a -> f (Product f g b)
traverseWithKey f :: Key (Product f g) -> a -> f b
f (Pair a :: f a
a b :: g a
b) = f b -> g b -> Product f g b
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (f b -> g b -> Product f g b)
-> f (f b) -> f (g b -> Product f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (Either (Key f) (Key g) -> a -> f b
Key (Product f g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a f (g b -> Product f g b) -> f (g b) -> f (Product f g b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Key g -> a -> f b) -> g a -> f (g b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey t, Applicative f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey (Either (Key f) (Key g) -> a -> f b
Key (Product f g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (TraversableWithKey1 f, TraversableWithKey1 g) => TraversableWithKey1 (Product f g) where
traverseWithKey1 :: (Key (Product f g) -> a -> f b)
-> Product f g a -> f (Product f g b)
traverseWithKey1 f :: Key (Product f g) -> a -> f b
f (Pair a :: f a
a b :: g a
b) = f b -> g b -> Product f g b
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (f b -> g b -> Product f g b)
-> f (f b) -> f (g b -> Product f g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Key f -> a -> f b) -> f a -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (Either (Key f) (Key g) -> a -> f b
Key (Product f g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key f -> Either (Key f) (Key g)) -> Key f -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key f -> Either (Key f) (Key g)
forall a b. a -> Either a b
Left) f a
a f (g b -> Product f g b) -> f (g b) -> f (Product f g b)
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> (Key g -> a -> f b) -> g a -> f (g b)
forall (t :: * -> *) (f :: * -> *) a b.
(TraversableWithKey1 t, Apply f) =>
(Key t -> a -> f b) -> t a -> f (t b)
traverseWithKey1 (Either (Key f) (Key g) -> a -> f b
Key (Product f g) -> a -> f b
f (Either (Key f) (Key g) -> a -> f b)
-> (Key g -> Either (Key f) (Key g)) -> Key g -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Key g -> Either (Key f) (Key g)
forall a b. b -> Either a b
Right) g a
b
instance (Adjustable f, Adjustable g) => Adjustable (Product f g) where
adjust :: (a -> a) -> Key (Product f g) -> Product f g a -> Product f g a
adjust f :: a -> a
f (Left i) (Pair a :: f a
a b :: g a
b) = f a -> g a -> Product f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((a -> a) -> Key f -> f a -> f a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Key f
i f a
a) g a
b
adjust f :: a -> a
f (Right j) (Pair a :: f a
a b :: g a
b) = f a -> g a -> Product f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair f a
a ((a -> a) -> Key g -> g a -> g a
forall (f :: * -> *) a.
Adjustable f =>
(a -> a) -> Key f -> f a -> f a
adjust a -> a
f Key g
j g a
b)
replace :: Key (Product f g) -> a -> Product f g a -> Product f g a
replace (Left i) v :: a
v (Pair a :: f a
a b :: g a
b) = f a -> g a -> Product f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (Key f -> a -> f a -> f a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key f
i a
v f a
a) g a
b
replace (Right j) v :: a
v (Pair a :: f a
a b :: g a
b) = f a -> g a -> Product f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair f a
a (Key g -> a -> g a -> g a
forall (f :: * -> *) a. Adjustable f => Key f -> a -> f a -> f a
replace Key g
j a
v g a
b)
type instance Key ((,) k) = k
instance Keyed ((,) k) where
mapWithKey :: (Key ((,) k) -> a -> b) -> (k, a) -> (k, b)
mapWithKey f :: Key ((,) k) -> a -> b
f (k :: k
k, a :: a
a) = (k
k, Key ((,) k) -> a -> b
f k
Key ((,) k)
k a
a)
instance FoldableWithKey ((,) k) where
foldMapWithKey :: (Key ((,) k) -> a -> m) -> (k, a) -> m
foldMapWithKey = (Key ((,) k) -> a -> m) -> (k, a) -> m
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry
instance FoldableWithKey1 ((,) k) where
foldMapWithKey1 :: (Key ((,) k) -> a -> m) -> (k, a) -> m
foldMapWithKey1 = (Key ((,) k) -> a -> m) -> (k, a) -> m
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry
instance TraversableWithKey ((,) k) where
traverseWithKey :: (Key ((,) k) -> a -> f b) -> (k, a) -> f (k, b)
traverseWithKey f :: Key ((,) k) -> a -> f b
f (k :: k
k, a :: a
a) = (,) k
k (b -> (k, b)) -> f b -> f (k, b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key ((,) k) -> a -> f b
f k
Key ((,) k)
k a
a
instance TraversableWithKey1 ((,) k) where
traverseWithKey1 :: (Key ((,) k) -> a -> f b) -> (k, a) -> f (k, b)
traverseWithKey1 f :: Key ((,) k) -> a -> f b
f (k :: k
k, a :: a
a) = (,) k
k (b -> (k, b)) -> f b -> f (k, b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key ((,) k) -> a -> f b
f k
Key ((,) k)
k a
a
type instance Key (HashMap k) = k
instance Keyed (HashMap k) where
mapWithKey :: (Key (HashMap k) -> a -> b) -> HashMap k a -> HashMap k b
mapWithKey = (Key (HashMap k) -> a -> b) -> HashMap k a -> HashMap k b
forall k v1 v2. (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
HashMap.mapWithKey
instance (Eq k, Hashable k) => Indexable (HashMap k) where
index :: HashMap k a -> Key (HashMap k) -> a
index = HashMap k a -> Key (HashMap k) -> a
forall k v. (Eq k, Hashable k) => HashMap k v -> k -> v
(HashMap.!)
instance (Eq k, Hashable k) => Lookup (HashMap k) where
lookup :: Key (HashMap k) -> HashMap k a -> Maybe a
lookup = Key (HashMap k) -> HashMap k a -> Maybe a
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
HashMap.lookup
instance (Eq k, Hashable k) => Zip (HashMap k) where
zipWith :: (a -> b -> c) -> HashMap k a -> HashMap k b -> HashMap k c
zipWith = (a -> b -> c) -> HashMap k a -> HashMap k b -> HashMap k c
forall k v1 v2 v3.
(Eq k, Hashable k) =>
(v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
HashMap.intersectionWith
instance (Eq k, Hashable k) => ZipWithKey (HashMap k) where
zipWithKey :: (Key (HashMap k) -> a -> b -> c)
-> HashMap k a -> HashMap k b -> HashMap k c
zipWithKey f :: Key (HashMap k) -> a -> b -> c
f a :: HashMap k a
a b :: HashMap k b
b = (HashMap k c -> k -> a -> HashMap k c)
-> HashMap k c -> HashMap k a -> HashMap k c
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
HashMap.foldlWithKey' HashMap k c -> k -> a -> HashMap k c
go HashMap k c
forall k v. HashMap k v
HashMap.empty HashMap k a
a
where
go :: HashMap k c -> k -> a -> HashMap k c
go m :: HashMap k c
m k :: k
k v :: a
v = case Key (HashMap k) -> HashMap k b -> Maybe b
forall (f :: * -> *) a. Lookup f => Key f -> f a -> Maybe a
lookup k
Key (HashMap k)
k HashMap k b
b of
Just w :: b
w -> k -> c -> HashMap k c -> HashMap k c
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
HashMap.insert k
k (Key (HashMap k) -> a -> b -> c
f k
Key (HashMap k)
k a
v b
w) HashMap k c
m
_ -> HashMap k c
m
instance FoldableWithKey (HashMap k) where
foldrWithKey :: (Key (HashMap k) -> a -> b -> b) -> b -> HashMap k a -> b
foldrWithKey = (Key (HashMap k) -> a -> b -> b) -> b -> HashMap k a -> b
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
HashMap.foldrWithKey
instance TraversableWithKey (HashMap k) where
traverseWithKey :: (Key (HashMap k) -> a -> f b) -> HashMap k a -> f (HashMap k b)
traverseWithKey = (Key (HashMap k) -> a -> f b) -> HashMap k a -> f (HashMap k b)
forall (f :: * -> *) k v1 v2.
Applicative f =>
(k -> v1 -> f v2) -> HashMap k v1 -> f (HashMap k v2)
HashMap.traverseWithKey
type instance Key Maybe = ()
instance Keyed Maybe where
mapWithKey :: (Key Maybe -> a -> b) -> Maybe a -> Maybe b
mapWithKey f :: Key Maybe -> a -> b
f = (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Key Maybe -> a -> b
f ())
instance Indexable Maybe where
index :: Maybe a -> Key Maybe -> a
index = a -> () -> a
forall a b. a -> b -> a
const (a -> () -> a) -> (Maybe a -> a) -> Maybe a -> () -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Maybe a -> a
forall a. HasCallStack => Maybe a -> a
fromJust
instance Lookup Maybe where
lookup :: Key Maybe -> Maybe a -> Maybe a
lookup _ mb :: Maybe a
mb = Maybe a
mb
instance Zip Maybe where
zipWith :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c
zipWith f :: a -> b -> c
f (Just a :: a
a) (Just b :: b
b) = c -> Maybe c
forall a. a -> Maybe a
Just (a -> b -> c
f a
a b
b)
zipWith _ _ _ = [Char] -> Maybe c
forall a. HasCallStack => [Char] -> a
error "zipWith: Nothing"
instance ZipWithKey Maybe where
zipWithKey :: (Key Maybe -> a -> b -> c) -> Maybe a -> Maybe b -> Maybe c
zipWithKey f :: Key Maybe -> a -> b -> c
f = (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c
forall (f :: * -> *) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith (Key Maybe -> a -> b -> c
f ())
instance FoldableWithKey Maybe where
foldMapWithKey :: (Key Maybe -> a -> m) -> Maybe a -> m
foldMapWithKey f :: Key Maybe -> a -> m
f = (a -> m) -> Maybe a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (Key Maybe -> a -> m
f ())
instance TraversableWithKey Maybe where
traverseWithKey :: (Key Maybe -> a -> f b) -> Maybe a -> f (Maybe b)
traverseWithKey f :: Key Maybe -> a -> f b
f = (a -> f b) -> Maybe a -> f (Maybe b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Key Maybe -> a -> f b
f ())