Musical MIDI Accompaniment

Reference Manual

Bob van der Poel
Wynndel, BC, Canada

bob@mellowood.ca

June 11, 2016

1 Overview and Introduction
License, Version and Legalities

1.1
1.2

1.3
1.4
1.5
1.6
1.7

About this Manual

1.2.1
1.2.2

1.2.4

Table Of Contents

Typographic Conventions it

IXTEX and HTML . .
1.2.3 Other Documentation
Music Notation . . .
Installing M
Running MA
Comments

Theory Of Operation
Case Sensitivity

2 Running M7

2.1

23

Command Line Options
2.2 Lines and Spaces
Programming Comments

3 Tracks and Channels

3.1

33

MA Tracks
3.2 Track Channels
Track Descriptions
Drum

Chord

3.3.1
332
333
334
335
3.3.6
3.3.7
3.3.8
339

Scale

Solo and Melody . .

Automatic Melodies

10
10
11
11
11
12
12
12
13
14
14
15

17
17
20
21

22
22
23
23
24
24
24
24
25
25
25
25
25

Table Of Contents
34 SilencingaTrack L
4 Patterns
4.1 DefiningaPattern e
411 Basso e e
4.1.2 Chord e
413 AIPegLIO e e e e e
4.1.4 Walk

4.1.5 Scale
4.1.6 Aria .

4.1.77 Plectrumo e
4.1.8 Drum e
419 DrumTone e
4.2 Including Existing Patterns in New Definitions
4.3 Multiplying and Shifting Patterns
5 Sequences
5.1 Defining Sequences e
5.2 SeqClear e
5.3 SeqRnd e
54 SeqRndWeight e
5.5 SeqSizeo e e e e e
6 Grooves
6.1 Creating A Groove v i i e e e e
6.2 Using A Groove i i i it e e e e e e
6.2.1 Extended Groove Notation
6.2.2 Overlay Grooves o i e e e e
6.3 Groove ALLases e e e e e e e e
6.4 AlIGrooves e e e e e e
6.5 Deleting Grooves L e e
6.6 Sticky e
6.7 LibraryIssues L
7 Riffs
7.1 DupRiffo
8 Musical Data Format
8.1 BarNumbers
8.2 BarRepeat e
8.3 Chords e
84 Rests e e
8.5 Positioning e e e
8.6 CaseSensitivity L
8.7 TrackChords e e

26

27
27
30
31
32
32
33
33
34
34
34
35
36

39
39
41
42
44
44

46
46
48
49
51
52
53
54
54
55

56
58

60
60
61
61
62
63
64
64

Table Of Contents

9

10

11

12

13

14

Lyrics

9.1 LyricOptions e e e
9.1.1 Enable e
9.1.2 EventType e
9.13 KarFileMode
9.1.4 Word Splitting

9.2 Chord Name Insertion e
9.2.1 Chord Transposition v v it e e

0.3 Setting Lyrics e e
0.3.1 Limitations e e e e e e e e e

Solo and Melody Tracks
10.1 NoteDataFormat. e
10.1.1 Chord EXtensions v i i e e
10.1.2 Accents o e
10.1.3 Long Notes e e e e e
10.1.4 Using Defaults
10.1.5 Stretch e
10.1.6 Other Commands e e
10.2 AutoSoloTracks e
10.3 Drum Solo Tracks e
10.4 Arpeggiation e e e e e e e
10.5 Sequence e e e e
10.6 VOICING e e e e e

Emulating plucked instruments: Plectrum Tracks

IT.T Tuning o o e e e e e e
I1.2 Capo o e e e e
I1.3 Strum o e e e e e
11.4 Articulate e e e e e e
11.5 Patterns e e e e e e e e
11.6 Fret NOiSe o o e e e e e e e e e e

Automatic Melodies: Aria Tracks

Randomizing

13.1 RndSeed e
132 RSKIp . . . o o e
13.3 RTime e e e e e
13.4 RDuration 0 e e e e e e
13.5 RPitch. o e
13.6 Other Randomizing Commands

Chord Voicing
14.1 Voicing o e e

66
66
66
67
67
67
68
68
69
70

73
74
76
78
79
80
80
80
81
81
83
83
84

85
85
86
86
87
87
89

92

95
95
95
96
97
98
99

101
101

Table Of Contents

14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

14.1.1 VoicingMode e
ChordAdjust
Compress
DupRoot e
Invert e
Limit . . . o
NoteSpan e e
Range L e
DefChord e

14.10 PrintChord e,
T4 TTNOLES . . . o o s,

15 Harmony

15.1
15.2
15.3

Harmony o e
HarmonyOnly e
HarmonyVolume e

16 Ornament

17 Tempo and Timing

17.1
17.2
17.3
17.4
17.5
17.6
17.7

Tempo L e
Time . . . e
TIMeSIZ e e
Truncate e e e e e e
BeatAdjust e
Fermata e
CUut . . e e e

18 Swing

18.1
18.2
18.3
18.4
18.5

SKeW . . e s

19 Volume and Dynamics

19.1
19.2

19.3
19.4
19.5
19.6
19.7

Accent . .. e e e e e
AdjustVolume L e
19.2.1 Mnemonic Volume Ratioso
19.2.2 Master Volume Ratio e
Volume e e e
Crescand Decresc e e e e
Swell . . . e e e e
RVolume e
Saving and Restoring Volumes L L o

112
112
113
114

115

119
119
120
122
123
125
126
129

131
132
133
133
133
134

Table Of Contents

20 Repeats

21 Variables, Conditionals and Jumps

22

23

24

21.1 Variables
21.1.1 Set

21.1.2 NewSet
21.1.3 MSet . . .
21.1.4 RndSet e
21.1.5 UnSet VariableName e
21.1.6 ShowVars e e

21.1.7 Inc

and Dec

21.1.8 VExpand Onor Off
21.1.9 StackValue

21.2 Predefined

Variables e

21.3 Indexing and Slicing L
21.4 Mathematical Expressions L L
21.5 Conditionals e e

21.6 Goto . .

Subroutines
22.1 DefCall .
222 Call . ..

2221 Defaults e
2222 Local Values

Plugins

23.0.1 Namingand Locating e
23.0.2 Distribution e e e
23.0.3 Enabling e
23.0.4 Disabling L e e
23.0.5 Security e e e e e e

Low Level MIDI Commands

24.1 Channel .

24.2 ChannelPref e

24.3 ChShare .

24.4 Channellnit e e

24.5 ForceOut
24.6 MIDI . .
24.7 MIDIClear
24.8 MIDICue

249 MIDICopyright e e e e

24.10 MIDIDef

24.11 MIDICresc and MIDIDecresc o v v i v e e e e e

24.12 MIDIFile

145

148
148
149
149
150
150
151
151
151
152
153
153
157
158
160
162

164
164
166
167
168

169
169
170
171
171
172

173
173
174
174
176
176
178
179
179
179
180
180
181

Table Of Contents

25

26

27

28

29

24.13

MIDIGlis

2414 MIDIWheel oL

24.15
24.16
24.17

24.18
24.19
24.20
24.21

MIDIInc
MIDIMark
MIDINote
24.17.1 Sett

INgZOPLONS

24.172Note Events e e e e e
24.17.3 Controller Events e

24.17.4 Pitc
24.17.5 Pitc

hBend
hBendRange.

24.17.6 Channel Aftertouch L
24.17.7 Channel AftertouchRange

MIDIPan
MIDISeq
MIDISplit
MIDIText

2422 MIDITname e e e e e e e e

24.23

MIDIVoice

2424 MIDIVolume e e e,

Patch Management

25.1
25.2

Trigg

After

Voice . .
Patch . .

25.2.1 Patch Set e
2522 PatchRename e
2523 Patch List
25.2.4 Ensuring It AllWorks Lo

€rs

Fine Tuning (Translations)

28.1
28.2
28.3
28.4
28.5

VoiceTIr .
ToneTr .
VoiceVolTr

DrumVoITr s,

Tweaks .

Other Commands and Directives

29.1
29.2
29.3
29.4
29.5

AllTracks
Articulate
CmdLine
Copy . .
Comment

182
182
184
187
188
188
189
190
191
191
191
192
192
194
196
197
197
197
199

200
200
201
201
202
203
203

206

210

212
213
214
214
215
216

217
217
218
219
219
220

Table Of Contents

29.6 Debug L
207 Delay e
208 Delete L e
299 DIrectiono e e e e e
2010 KeySig L e e
2011 Mallet oo e e e

20.11.1Rate L o e

20.11.2Decay e e e e e
20.120ctave e e e e
2013 MOCtave L e e e e e e
20,14 Off . . . o e e
201500 . . Lo e
2016 Print L.
2017 PrintACtive L . e e e e e e
2018 Restart e e e
29.19 ScaleType e
2920S€q . ..o e
2021 Strum . .. L. e e
2022 StrumAdd . . . L L e
2023 Synchronize L e
29.24 SetSyncTone L e e e
2025 TranSpoSe v v v it e e e e e e e e e e e e
2026 Unify L

30 Begin/End Blocks
30.1 Begin e e e e
302 End . ..o e e

31 Documentation Strings
311 DoC . . o o e e e e e
31.2 Author L e
31.3 DocVar e e e e e

32 Paths, Files and Libraries
32.0.1 dmAModules e
32.0.2 Special Characters In Filenames
32.0.3 TildesInFilenames e
32.0.4 Filenames and the Command Line
32.1 File EXtensions e e e e e e e
322 EBof . . e
32.3 LibPath e
324 MIDIPlayer e e e e e
32.5 Groove Previews e e e e
32.6 OutPath e
327 Include e e e

235
235
236

237
237
237
238

239
239
240
240
241
241
242
242
243
244
245
245

Table Of Contents

32.8 IncPath e
329 Use . . . o o e e
3210 MmaStart e
3211 MmaEndo
32.12RCFiles e
3213 Library Files e

32.13.1 Maintaining and Using Libraries

33 Creating Effects
33.1 Overlapping Notes e e
33.2 Jungle Birds e

34 Frequency Asked Questions
34.1 Chord Octaves v i i i e e e e
342 AABA SongForms
343 Where’sthe GUI? o

A Symbols and Constants
A.1 Chord Names e e e
A.1.1 Octave Adjustment e e
A.1.2 Altered Chords
A.1.3 Diminished Chords
A.1.4 SlashChords
A.1.5 Polychords e
A.1.6 ChordInversions i e e
A.17 Barre Settings e e e e e
A.1.8 RomanNumerals
A2 MIDIVOICES o o o e e
A.2.1 Voices, Alphabetically
A2.2 Voices, ByMIDI Value
A3 DrumNotes e e e e e e
A.3.1 Drum Notes, Alphabetically
A.3.2 Drum Notes,by MIDI Value
A4 MIDIControllers e e
A.4.1 Controllers, Alphabetically
A4.2 Controllers,by Value

B Bibliography and Thanks

C Command Summary

Chapter 1

Overview and Introduction

Musical MIDI Accompaniment, MA,' generates standard MIDI? files which can be used as a backup track
for a soloist. It was written especially for me—I am an aspiring saxophonist and wanted a program to
“play” the piano and drums so I could practice my jazz solos. With M4 I can create a track based on the
chords in a song, transpose it to the correct key for my instrument, and play my very bad improvisations
until they get a bit better.

I also lead a small combo group which is always missing at least one player. With 94 generated tracks
the group can practice and perform even if a rhythm player is missing. This all works much better than I
expected when I started to write the program ... so much better that I have used M generated tracks for
live performances with great success.

Around the world musicians are using M for practice, performance and in their studios. Much more than
ever imagined when this project was started!

1.1 License, Version and Legalities

The program M4 was written by and is copyright Robert van der Poel, 2003—2015.

This program, the accompanying documentation, and library files can be freely distributed according to
the terms of the GNU General Public License (see the distributed file “COPYING”).

If you enjoy the program, make enhancements, find bugs, etc. send a note to me at bob@mellowood.ca;
or a postcard (or even money) to PO Box 57, Wynndel, BC, Canada VOB 2N0.

The current version of this package is maintained at: http://www.mellowood.ca/mma/.

This document reflects version 16.06 of M.

"Musical MIDI Accompaniment and the short form 4 in the distinctive script are names for a program written by Bob van
der Poel. The “MIDI Manufacturers Association, Inc.” uses the acronym MMA, but there is no association between the two.
2MIDI is an acronym for Musical Instrument Digital Interface.

10

1.2 4bout this Manual Overview and Introduction

I have done everything I can to ensure that the program functions as advertised, but I assume
no responsibility for anything it does to your computer or data.
Sorry for this disclaimer, but we live in paranoid times.

This manual most likely has lots of errors. Spelling, grammar, and probably a number of the
examples need fixing. Please give me a hand and report anything ... it’ll make it much easier
for me to generate a really good product for all of us to enjoy.

1.2 About this Manual

This manual was written by the program author—and this is always a very bad idea. But, having no
volunteers, the choice is no manual at all or my bad perspectives.>

MiA 1s a large and complex program. It really does need a manual; and users really need to refer to the
manual to get the most out of the program. Even the author frequently refers to the manual. Really.

I have tried to present the various commands in a logical and useful order. The table of contents should
point you quickly to the relevant sections.

1.2.1 Typographic Conventions

71 The name of the program is always set in the special logo type: MnA.
JJ 267 commands and directives are set in small caps: DIRECTIVE.
4 Important stuff is emphasized: important.
JJ Websites look like this: http://www.mellowood.ca/mma/index.html
JJ Filenames are set in bold typewriter font: £ilename.mma
JJ Lines extracted from a 44 input file are set on individual lines:
A command from a file

71 Commands you should type from a shell prompt (or other operating system interface) have a leading
$ (to indicate a shell prompt) and are shown on separate lines:

$ enter this

1.2.2 IATgX and HTML

The manual has been prepared with the I&TEX typesetting system. Currently, there are two versions avail-
able: the primary version is a PDF file intended for printing or on-screen display (generated with dvipdf);

3The problem, all humor aside, is that the viewpoints of a program’s author and user are quite different. The two “see”
problems and solutions differently, and for a user manual the programmer’s view is not the best.

11

1.3 Installing MA Overview and Introduction

the secondary version is in HTML (transformed with I&[EX2HTML) for electronic viewing. If other formats
are needed . .. please offer to volunteer.

1.2.3 Other Documentation

In addition to this document the following other items are recommended reading:
JJ The standard library documentation supplied with this document in PDF and HTML formats.
71 The % tutorial supplied with this document in PDF and HTML formats.
73 A short reference on writing PLUGINS is available in both PDF and HTML formats.
JJ Various README files in the distribution.

JJ The Python source files.

1.2.4 Music Notation

The various snippets of standard music notation in this manual have been prepared with the MUP program.
I highly recommend this program and use it for most of my notation tasks. MUP is available from Arkkra
Enterprises, http://www.Arkkra.com/.

1.3 Installing 27

MiA s a Python program developed with version 2.7 of Python. At the very least you will need this version
(or later) of Python or any of the 3.x versions.

To play the MIDI files you’ll need a MIDI player. aplaymidi, tse3play, and many others are available for
Linux systems. For Windows and Mac systems I’m sure there are many, many choices.

You’ll need a text editor like vi, emacs, etc. to create input files. Don’t use a word processor!

MiA consists of a variety of bits and pieces:

JJ The executable Python script, mma,* must somewhere in your path. For users running Windows or

Mac, please check M4 website for details on how to install on these systems. As distributed the file
“mma.py” (and, when installed) “mma” are executable scripts with the correct permissions already
set (this has no effect for Windows).

73 A number of Python modules (all are files ending in “.py”). These should all be installed under
the directory /usr/local/share/mma/MMA. See the enclosed file INSTALL for some additional
commentary.

“In the distribution this is mma.py. It is renamed to save a few keystrokes when entering the command.

12

1.4 Running MiA Overview and Introduction

73 A number of library files defining standard rhythms. These should all be installed under the di-
rectory /usr/local/share/mma/lib/stdlib. In addition, the library files depend on files in
/usr/local/share/mma/includes.

The scripts cp-install or In-install will install ¢4 properly on most Linux systems. Both scripts
assume that main script is to be installed in /usr/local/bin and the support files in /usr/local/share/
mma. If you want an alternate location, you can edit the paths in the script. The only supported alternate to
use is /usr/share/mma.

The difference between the two scripts is that In-install creates symbolic links to the current location;
cp-install copies the files. Which to use it up to you, but if you have unpacked the distribution in a
stable location it is probably easier to use the link version.

In addition, you can run MA from the directory created by the untar. This is not recommended, but will
show some of M7’s stuff. In this case you’ll have to execute the program file mma. py.

To run either install script, you should be “root” (or at least, you need write permissions in /usr/local/).
Use the “su” or “sudo” command for this.

If you want to install 41 on a platform other than Linux, please get the latest updates from our website at
www.mellowood.ca/mma.

1.4 Running 2172

For details on the command line operations in M, please refer to chapter 2.
To create a MIDI file you need to:

1. Create a text file (also referred to as the “input file”’) with instructions which #7 understands. This
includes the chord structure of the song, the rhythm to use, the tempo, etc. The file can be created
with any suitable text editor.

2. Process the input file. From a command line the instruction:
$ mma myfile <ENTER>
will invoke M4 and, assuming no errors are found, create a MIDI file myfile.mid.
3. Play the MIDI file with any suitable MIDI player.
4. Edit the input file again and again until you get the perfect track.
5. Share any patterns, sequences and grooves with the author so they can be included in future releases!
An input file consists of the following information:
1. 27 directives. These include TEMPO, TIME, VOLUME, etc. See chapter 29.

2. PATTERN, SEQUENCE and GROOVE detailed in chapters 4, 5, and 6.

SaiA is pretty open about the “encoding” of the file, but to keep Python 3.x happy you should use “cp1252” (a standard
Windows format).

13

1.5 Comments Overview and Introduction

3. Music information. See chapter 8.
4. Comment lines and blank lines. See below.

Items 1 to 3 are detailed later in this manual. Please read them before you get too involved in this program.

1.5 Comments

Proper indentation, white space and comments are a good thing—and you really should use them. But, in
most cases MiA really doesn’t care:

43 Any leading space or tab characters are ignored,
JJ Multiple tabs and other white space are treated as single characters,
43 Any blank lines in the input file are ignored.
Each line is initially parsed for comments. A comment is anything following a “//” (2 forward slashes).®

Multi-line or block comments are also supported by M. A block comment is started by a “/*” and
terminated by a “*/”.7 Nesting of block comments is not supported and will generate unexpected results.

Both simple and block comments are stripped from the input stream.

Lines starting with the COMMENT directive are also ignored (but not stripped). See the COMMENT dis-
cussion on page 220 for details.

1.6 Theory Of Operation

To understand how M4 works it’s easiest to look at the initial development concept. Initially, a program
was wanted which would take a file which looked something like:

Tempo 120
Fm
c7

and end up with a MIDI file which played the specified chords over a drum track.
Of course, after starting this “simple” project a lot of complexities developed.

First, the chord/bar specifications. Just having a single chord per bar doesn’t work—many songs have
more than one chord per bar. Second, what is the rhythm of the chords? What about bass line? Oh, and
where is the drummer?

The first choice for a comment character was a single “#”, but that sign is used for “sharps” in chord notation.
"These symbols are used in many other languages, most notably “C”.

14

1.7 Case Sensitivity Overview and Introduction

Well, things got more complex after that. At a bare minimum, the program or interface should have the
ability to:

J3 Specify multiple chords per bar,

JJ Define different patterns for chords, bass lines and drum tracks,

JJ Have easy to create and debug input files,

73 Provide a reusable library that a user could simply plug in, or modify.
From these simple needs A4 was created.

The basic building blocks of M are PATTERNSs. A pattern is a specification which tells M1 what notes of
a chord to play, the start point in a bar for the chord/notes, and the duration and the volume of the notes.

MiA patterns are combined into SEQUENCEs. This lets you create multi-bar rhythms.

A collection of patterns can be saved and recalled as GROOVEs. This makes it easy to pre-define complex
rhythms in library files and incorporate them into your song with a simple two word command.

MA is bar or measure based (we use the words interchangeably in this document). This means that 44
processes your song one bar at a time. The music specification lines all assume that you are specifying a
single bar of music. The number of beats per bar can be adjusted; however, all chord changes must fall on
a beat division (the playing of the chord or drum note can occur anywhere in the bar).

To make the input files look more musical, MA supports REPEATs and REPEATENDINGs. However,
complexities like D.S. and Coda are not internally supported (but can be created by using the GOTO
command).

1.7 Case Sensitivity

Just about everything in a M file is case insensitive.
This means that the command:
Tempo 120
could be entered in your file as:
TEMPO 120
or even
TeMpO 120
for the exact same results.

Names for patterns, and grooves are also case insensitive.

15

1.7 Case Sensitivity Overview and Introduction

The only exceptions are the names for chords, notes in SOLOs, and filenames. In keeping with standard
chord notation, chord names are in mixed case; this is detailed in Chapter 8. Filenames are covered in

Chapter 32.

16

Chapter 2
Running MA

MiAis acommand line program. To run it, simply type the program name followed by the required options.
For example,

$ mma test
processes the file test! and creates the MIDI file test .mid.

When 24 is finished it displays the name of the generated file, the number of bars of music processed and
an estimate of the song’s duration. Note:

73 The duration is fairly accurate, but it does not take into account any mid-bar TEMPO changes.

71 The report shows minutes and hundredths of minutes. This is done deliberately so that you can add
a number of times together. Converting the time to minutes and seconds is left as an exercise for the
user.

2.1 Command Line Options

The following command line options are available:

Option Description

Debugging and other aids to figuring out what’s going on.

-b Range List | Limit generation to specified range of bars. The list of bar numbers is in the format
N1-N2 or N1,N2,N3 or any combination (N1-N2,N3,N4-N5). Only those bars in
the specified range will be compiled. The bar numbers refer to the “comment” bar
number at the start of a data line ... note that the comment numbers will vary from
the actual bar numbers of the generated song.?

-B Range List | Same as -b (above), but here the bar numbers refer to the absolute bar numbers in the
generated file.

-C Display the tracks allocated and the MIDI channel assignments after processing the
input file. No output is generated.

! Actually, the file test or test .mma is processed. Please read section 32.1.
2Use of this command is not recommended for creating production MIDI files. A great deal of “unused” data is included in
the files which may create timing problems. The command is designed for quick previews and debugging.

17

2.1 Command Line Options Running MA

-d Enable LOTS of debugging messages. This option is mainly designed for program
development and may not be useful to users.>

-e Show parsed/expanded lines. Since M does some internal fiddling with input lines,
you may find this option useful in finding mismatched BEGIN blocks, etc.

-I Name Display a help or usage message for a plugin. M will attempt to find and load the
plugin Name and display its usage message (a “not found” message will be displayed
if the plugin doesn’t have a printUsage method).

-II Ignore permission test for loading PLUGINS. Use of this option is not recommended,
but it can be quite useful when writing and testing a plugin.

-0 A debug subset. This option forces the display of complete filenames/paths as they
are opened for reading. This can be quite helpful in determining which library files
are being used.

-p Display patterns as they are defined. The result of this output is not exactly a duplicate
of your original definitions. Most notable are that the note duration is listed in MIDI
ticks, and symbolic drum note names are listed with their numeric equivalents.

-r Display running progress. The bar numbers are displayed as they are created com-
plete with the original input line. Don’t be confused by multiple listing of “*” lines.
For example the line

33 Cm * 2
would be displayed as:

88: 33 Cm =*2

89: 33 Cm =*2
This makes perfect sense if you remember that the same line was used to create both
bars 88 and 89.
See the -L option, below for an alternate report.

-L This command option will save the bar numbers (see page 60) you supply at the start
of lines and print this as a list at the end of the compile process. This is very handy if
you have multiple repeats and/or GOTOs and need to determine what you might have
done wrong. Lines without labels are displayed as ”?”.

-S Display sequence info during run. This shows the expanded lists used in sequences.
Useful if you have used sequences shorter (or longer) than the current sequence
length.

-V Show program’s version number and exit.

-w Disable warning messages.

Commands which modify 27’s behavior.

-0 Generate a synchronization tick at the start of every MIDI track. Note that the option
character is a “zero”, not a “O”. For more details see SYNCHRONIZE, page 230.

3 A number of the debugging commands can also be set dynamically in a song. See the debug section on page 221 for details.

18

2.1 Command Line Options Running MA

-1 Force all tracks to end at the same offset. Note that the option character is a “one”,
not an “L”. For more details see SYNCHRONIZE, page 230.

-m BARS Set the maximum number of bars which can be generated. The default setting is 500
bars (a long song!*). This setting is needed since you can create infinite loops by
improper use of the GOTO command. If your song really is longer than 500 bars use
this option to increase the permitted size.

-M x Generate type 0 or 1 MIDI files. The parameter “x” must be set to the single digit
“0” or ”’1”. For more details, see the MIDISMF section on page 181.

-n Disable generation of MIDI output. This is useful for doing a test run or to check for
syntax errors in your script.

-p Play and delete MIDI file. Useful in testing, the generated file will be played with the
defined MIDI file player (see section on page 243). The file is created in the current
directory and has the name “MMAtmpXXX.mid” with “XXX” set to the current PID.

-S Set a macro. If a value is needed, join the value to the name with a ’=". For example:
$ mma myfile -S tempo=120
will process the file myfile.mma with the variable $Tempo set with the value “120”.
You need not specify a value:
$ mma myfile -S test
just sets the variable $test with no value.

-T TRACKS | Generate only data for the tracks specified. The tracks argument is a list of comma
separated track names. For example, the command “mma mysong -T drum-hh,chord”
will limit the output to the Drum-HH and Chord tracks. This is useful in separating
tracks for multi-track recording.

-V Play a short audio preview of a GROOVE in the MM library. For complete details on
this command see section on page 244.

Maintaining M2’s database.

-g Update the library database for the files in the LIBPATH. You should run this com-
mand after installing new library files or adding a new groove to an existing library
file. If the database (stored in the files in each library under the name .mmaDB) is not
updated, M will not be able to auto-load an unknown groove. Please refer to the
detailed discussion on page 249 for details.

The current installation of 4 does not set directory permissions. It simply copies
whatever is in the distribution. If you have trouble using this option, you will proba-
bly have to reset the permissions on the lib directory.

MA will update the groove database with all files in the current LIBPATH. All files
must have a “.mma” extension. Any directory containing a file named MMAIGNORE
will be ignored.” Note, that MMAIGNORE consists of all uppercase letters and is usually
an empty file.

4500 bars with 4 beats per bar at 200 BPM is about 10 minutes.
3Sub-directories in a directory with a MMATGNORE are processed ... they need additional MMATGNORE entires to ignore.

19

2.2 Lines and Spaces Running MA

-G Same as the “-g” option (above), but the uppercase version forces the creation of a
new database file—an update from scratch just in case something really goes wrong.

File commands.
-1 Specity the RC file to use. See page 248.

-f FILE Set output to FILE. Normally the output is sent to a file with the name of the input file
with the extension “.mid” appended to it. This option lets you set the output MIDI
file to any file name.

9

- A single “-” on the command line tells 24 to use STDIN for input. Use of this option
makes the use of the -f option (above) necessary ... otherwise M would not know
where to save the generated MIDI data.

The following commands are used to create the documentation. As a user you
should probably never have a need for any of them.

-Dk Print list of 24 keywords. For editor extension writers.

-Dxl Expand and print DOC commands used to generate the standard library reference for
Latex processing. No MIDI output is generated when this command is given. Doc
strings in RC files are not processed. Files included in other files are processed.

-Dxh Same as -DxI, but generates HTML output. Used by the mma-1ibdoc.py tool.

-Dgh Generate HTML output for Groove specified on the command line. If the specified
groove name has a ’/’ the first part of the name is assumed to be a file to read using
USE. Used by the mma-1ibdoc.py tool.

-Dbo Generate a list of defined groove names and descriptions from a file specified on the
command line. Used by the mma-gb.py tool.

-Ds Generates a list of sequence information. Used by the mma-1ibdoc.py tool.

A number of the above command line options are also available from the CMDLINE option detailed on
page 219.

2.2 Lines and Spaces

When 97 reads a file it processes the lines in various places. The first reading strips out blank lines and
comments of the “//” type.

On the initial pass though the file any continuation lines are joined. A continuation line is any line ending
with a single “\”"—simply, the next line is concatenated to the current line to create a longer line.

Unless otherwise noted in this manual, the various parts of a line are delimited from each other by runs
of white space. White space can be tab characters or spaces. Other characters may work, but that is not
recommended, and is really determined by Python’s definitions.

20

2.3 Programming Comments Running MA

2.3 Programming Comments

MiA is designed to read and write files (including a file piped to it via stdin). However, it is not a filter.®

As noted earlier in this manual, 24 has been written entirely in Python.There were some initial concerns
about the speed of a “scripting language” when the project was started, but Python’s speed appears to be
entirely acceptable. On my long-retired AMD Athlon 1900+ system running Mandrake Linux 10.1, most
songs compiled to MIDI in well under one second. If you need faster results, you’re welcome to recode
this program into C or C++, but it would be cheaper to buy a faster system, or spend a bit of time tweaking
some of the more time intensive Python loops.

It is possible that filter mode for output could be added to M, but I'm not sure why this would be needed.

21

Chapter 3

Tracks and Channels

This chapter discusses M tracks and MIDI channels. If you are reading this manual for the first time you
might find some parts confusing. If you do just skip ahead—you can run M1 without knowing many of
these details.

3.1 M4 Tracks

To create your accompaniment tracks, M divides output into several internal tracks. There are a total of
10 basic track types. Each track type has its own algrorithms for managing patterns. An unlimited number
of sub-tracks can be created.

When 24 is initialized there are no tracks assigned; however, as your library and song files are processed
various tracks will be created. Each track is created a unique name. The basic track types are: ARIA,
ARPEGGIO, BASS, CHORD, DRUM, MELODY, SCALE, SOLO, and PLECTRUM. Each is discussed later
in this chapter.

Tracks are named by appending a “-” and “name” to the type-name. This makes it very easy to remember
the names, without any complicated rules. So, drum tracks can have names “Drum-1", “Drum-Loud” or
even “Drum-a-long-name”. The other tracks follow the same rule.

In addition to the hyphenated names described above, you can also name a track using the type-name. So,
“DRUM?” is a valid drum track name. In the supplied library files you’ll see that the hyphenated form is
usually used to describe patterns.

All track names are case insensitive. This means that the names “Chord-Sus”, “CHORD-SUS” and
“CHORD-sus” all refer to the same track.

If you want to see the names defined in a song, just run M on the file with the “-c” command line option.

22

3.2 Track Channels Tracks and Channels

3.2 Track Channels

MIDI defines 16 distinct channels numbered 1 to 16.! There is nothing which says that “chording” should
be sent to a specific channel, but the drum channel should always be channel 10.

For 27 to produce any output, a MIDI channel must be assigned to a track. During initialization all of the
DRUM tracks are assigned to special MIDI channel 10. As musical data is created other MIDI channels
are assigned to various tracks as needed.

Channels are assigned from 16 down to 1. This means that the lower numbered channels will most likely
not be used, and will be available for other programs or as a “keyboard track” on your synth.

In most cases this will work out just fine. However, there are a number of methods you can use to set
the channels “manually”. You might want to read the sections on CHANNEL (page 173), CHSHARE
(page 174), ON (page 226), and OFF (page 226).

Why bother with all these channels? It would be much easier to put all the information onto one channel,
but this would not permit you to set special effects (like MIDIGLIS or MIDIPAN) for a specific track. It
would also mean that all your tracks would need to use the same instrumentation.

3.3 Track Descriptions

You might want to come back to this section after reading more of the manual. But, somewhere, the
different track types, and why they exist needs to be detailed.

Musical accompaniment comes in a combination of the following:
7 Chords played in a rhythmic or sustained manner,
41 Single notes from chords played in a sustained manner,
71 Bass notes. Usually played one at a time in a rhythmic manner,
JJ Scales, or parts of scales. Usually as an embellishment,
JJ Single notes from chords played one at time: arpeggios.
73 Drums and other percussive instruments played rhythmically.

Of course, this leaves the melody ... but that is up to you, not M. .. but, if you suspect that some power
is missing here, read the brief description of SOLO and MELODY tracks (page 25) and the complete “Solo
and Melody Tracks” chapter (page 73).

MA comes with several types of tracks, each designed to fill different accompaniment roles. However, it’s
quite possible to use a track for different roles than originally envisioned. For example, the bass track can
be used to generate a single, sustained treble note—or, by enabling HARMONY, multiple notes.

I'The values 1 to 16 are used in this document. Internally they are stored as values 0 to 15.
2This is not a MIDI rule, but a convention established in the GM (General MIDI) standard. If you want to find out more
about this, there are lots of books on MIDI available.

23

3.3 Track Descriptions Tracks and Channels

The following sections give an overview of the basic track types, and give a few suggestions on their uses.

3.3.1 Drum

Drums are the first thing one usually thinks about when we hear the word “accompaniment”. All 44 drum
tracks share MIDI channel 10, which is a GM MIDI convention. Drum tracks play single notes determined
by the TONE setting for a particular sequence.

3.3.2 Chord

If you are familiar with the sound of guitar strumming, then you’re familiar with the sound of a chord.
MA chord tracks play a number of notes, all at the same time. The volume of the notes (and the number of
notes) and the rhythm is determined by pattern definitions. The instrument used for the chord is determined
by the VOICE setting for a sequence.

3.3.3 Arpeggio

In musical terms an arpeggio’ is the notes of a chord played one at a time. M arpeggio tracks take the
current chord and, in accordance to the current pattern, play single notes from the chord. The choice of
which note to play is mostly decided by M. You can help it along with the DIRECTION modifier.

ARPEGGIO tracks are used quite often to highlight rhythms. Using the RSKIP directive produces broken
arpeggios.

Using different note length values in patterns helps to make interesting accompaniments.

3.3.4 Scale

The playing of scales is a common musical embellishment which adds depth and character to a piece.

When MiA plays a scale, it first determines the current chord. There is an associated scale for each chord
which attempts to match the flavor of that chord. The following table sums up the logic used to create the
scales:

Major A major scale,
Minor A melodic minor scale,*
Diminished A melodic minor scale with a minor fifth and minor dominant seventh.

Etc Other scales are developed in a similar manner. If you need to know, look at the source file chordtable.
py.

3The term is derived from the Italian “to play like a harp”.
4If you think that support for Melodic and Harmonic minor scales is important, please contact us.

24

3.3 Track Descriptions Tracks and Channels

All scales start on the tonic of the current chord.

If the SCALETYPE is set to CHROMATIC, then a chromatic scale is used. The default for SCALETYPE is
AUTO.

MiA plays successive notes of a scale. The timing and length of the notes is determined by the current
pattern. Depending on the DIRECTION setting, the notes are played up, down or up and down the scale.

3.3.5 Bass

BASS tracks are designed to play single notes for a chord for standard bass patterns. The note to be
played, as well as its timing, is determined by the pattern definition. The pattern defines which note from
the current chord or scale to play. For example, a standard bass pattern might alternate the playing of the
root and fifth notes of a scale. You can also use BASS tracks to play single, sustained treble notes.

3.3.6 Walk

The WALK tracks are designed to imitate “walking bass” lines. Traditionally, they are played on bass
instruments like the upright bass, bass guitar or tuba.

A WALK track uses a pattern to define the note timing and volume. Which note is played is determined
from the current chord and a simplistic direction algorithm. There is no user control over the note selection.

3.3.7 Plectrum

PLECTRUM tracks emulate the sound of a plucked instrument like a guitar or banjo. All other M4 tracks
take a note length or duration option in their sequence definitions — PLECTRUM tracks are different: the
sounds in these tracks continue to sound until a new chord or pattern is encountered. They can also sound
“fuller” than other tracks since more notes tend to be played.

3.3.8 Solo and Melody

SOLO and MELODY tracks are used for arbitrary note data. Most likely, this is a melody or counter-melody
... but these tracks can also be used to create interesting endings, introductions or transitions.

3.3.9 Automatic Melodies

Real composers don’t need to fear much from this feature ... but it can create some interesting effects.
ARIA tracks use a predefined pattern to generate melodies over a chord progression. They can be used to
actually compose a bit of music or simply to augment a section of an existing piece.

25

3.4 Silencing a Track. Tracks and Channels

3.4 Silencing a Track

There are a number of ways to silence a track:
43 Use the OFF command to stop the generation of MIDI data (page 226).
7] Disable the sequence for the bar with an empty sequence (page 40).
71 Delete the entire sequence with SEQCLEAR (page 41).
71 Disable the MIDI channel with a “Channel 0 (page 173).
J3 Force only the generation of specific tracks with the -T command line option (page 19).

Please refer to the appropriate sections on this manual for further details.

26

Chapter 4

‘Patterns

MiA builds its output based on PATTERNs and SEQUENCESs supplied by you. These can be defined in the
same file as the rest of the song data, or can be included (see chapter 32) from a library file.

A pattern is a definition for a voice or track which describes what rhythm to play during the current bar.
The actual notes selected for the rhythm are determined by the song bar data (see chapter 8).

4.1 Defining a Pattern

The formats for the different tracks vary, but are similar enough to confuse the unwary.
Each pattern definition consists of three parts:

73 A unique label to identify the pattern. This is case-insensitive. Note that the same label names can
be used in different tracks—for example, you could use the name “MyPattern” in both a Drum and
Chord pattern ... but this is probably not a good idea. Names can use punctuation characters, but

[T (1)

must not begin with an underscore (“_”). The pattern names “z” or “Z” and ““-” are also reserved.

7% 1]

J3 A series of note definitions. Each set in the series is delimited with a «;”.
JJ The end of the pattern definition is indicated by the end-of-line.

In the following sections definitions are shown in continuation lines; however, it is quite legal to mash all
the information onto a single line.

The following concepts are used when defining a pattern:

Start When to start the note. This is expressed as a beat offset. For example, to start a note at the start of
a bar you use “1”, the second beat would be “2”, the fourth “4”, etc. You can easily use off-beats
as well: The “and” of 2 is “2.5”, the “and ahh” of the first beat is “1.75”, etc. Using a beat offset
greater than the number of beats in a bar or less than “0” is not permitted. Please note that offsets in
the range “0” to “.999” will actually be played in the previous bar using the chord specified at beat
1 of the current bar (this can be useful in Jazz charts, and it will generate a warning!).! See TIME
(page 120).

The offset can be further modified by appending a note length (see the duration chart, below). If
you want to specify an offset in the middle of the first beat you can use “1.5” or “1+8”. The latter

IThe exception is that RTIME may move the chord back into the bar.

27

4.1 Defining a Pattern Patterns

means the first beat plus the value of an eight note. This notation is quite useful when generating
“swing” sequences. For example, two “swing eights” chords on beat one would be notated as: “1
81 90; 1+81 82 90”.

You can subtract note lengths as well, but this is rarely done. And, to make your style files com-

pletely unreadable, you can even use note length combinations. So, yes, the following pattern is
fine:?

Chord Define Cl 2-81+4 82 90

Duration The length of a note is somewhat standard musical notation. Since it is impractical to draw in
graphical notes or to use fractions (like }) 2, uses a shorthand notation detailed in the following

table:
Notation | Description
1 Whole note
2 Half
4 Quarter
8 Eighth
81 The first of a pair of swing eights
82 The second of a pair of swing eights
16 Sixteenth
32 Thirty-second
64 Sixty-fourth
3 Eight note triplet
43 Quarter note triplet
23 Half note triplet
6 Sixteenth note triplet
5 Eight note quintuplet
0 A single MIDI tick
ddT dd MIDI ticks.

The “81” and “82” notations represent the values of a pair of eighth notes in a swing pair. These
values vary depending on the setting of SWINGMODE SKEW, see page 131.

The note length “0” is a special value often used in drum tracks where the actual “ringing”length
appears to be controlled by the MIDI synth, not the driving program. Internally, a “0” note length is
converted to a single MIDI tick.

Lengths can have a single or double dot appended. For example, “2.” is a dotted half note and “4..”
adds an eight and sixteenth value to a quarter note.

Note lengths can be combined using “+”. For example, to make a dotted eight note use the notation
“8+16”, a dotted half “2+4”, and a quarter triplet “3+3”.

Note lengths can also be combined using a “-”. For example, to make a dotted half you could use
“1-4”. Subtraction might appear silly at first, but is useful in generating a note just a bit shorter than

2The start offset is the value of the first of a pair of swing eights plus a quarter before the second beat.

28

4.1 Defining a Pattern Patterns

its full beat. For example, “1-0” will generate a note 1 MIDI tick shorter than a whole note. This
can be used in generating breaks in sustained tones.>

It is permissible to combine notes with “dots”, “+”s and “-”’s. The notation “2.+4” would be the
same as a whole note.

A number of special tuplet values (ie, 3, 6, 5) have been hard-coded into the above table. However,
it is easy to use others. Just specify the note in the ratio format “Count:Base” where “Count” is the
number of divisions and “Base” is a note duration from the above table (ie, 2, 4, 8, etc.). So, an eight
note triplet could be set as “3:4” (there are 3 eight note triplets in a quarter) or a whole note divided
into 5 would be “5:1”. The “Base” value cannot be a MIDI tick value or be dotted. It is possible
to create tuplet values which are not playable and/or permitted in standard musical notation. Ratio
tuplets can be added, subtracted and dotted.

The actual duration given to a note will be adjusted by the ARTICULATE value page 218).

In special cases you might want to forget all standard duration conventions and specify the length
of a note or chord in MIDI ticks. Just append a single “t” or “T” to end of the value. For example, a
quarter note duration can be set with a “4” or “192t”. Using MIDI values can simplify the creation
of odd-length beats.

99 4¢ 9 (12

When using MIDI tick values you cannot use “+”, “-” or “.” to combine or modify the value.

Volume The MIDI velocity” to use for the specified note. For a detailed explanation of how 24 calculates
the volume of a note, see chapter 19.

MIDI velocities are limited to the range 0 to 127. However, M4 does not check the volumes specified
in a pattern for validity.’

In most cases velocities in the range 50 to 100 are useful.

Patterns can be defined for BASS, WALK, CHORD, ARPEGGIO and DRUM tracks. All patterns are shared
by the tracks of the same type—Chord-Sus and Chord-Piano share the patterns for Chord. As a conve-
nience, M4 will permit you to define a pattern for a sub-track, but remember that it will be shared by all
similar tracks. For example:

Drum Define S1 1 0 50
and
Drum-woof Define S1 1 0 50

Will generate identical outcomes.%

3See the supplied GROOVE “Bluegrass” for an example.

4MIDI “note on” events are declared with a “velocity” value. Think of this as the “striking pressure” on a piano.

SThis is a feature that you probably don’t want to use, but if you want to ensure that a note is always sounded use a very
large value (e.g., 1000) for the volume. That way, future adjustments will maintain a large value and this large value will be
clipped to the maximum permitted MIDI velocity.

®What really happens is that this definition is stored in a slot named “DRUM”.

29

4.1 Defining a Pattern Patterns

4.1.1 Bass

A BASS pattern is defined with:
Position Duration Offset Volume ;
Each group consists of an beat offset for the start point, the note duration, the note offset and volume.

The note offset is one of the digits “1” through “7”, each representing a note of the chord scale. So, if you
want to play the root and fifth in a traditional bass pattern you’d use “1” and “5” in your pattern definition.

€6 9 (132

The note offset can be modified by appending a single or multiple set of “+” or signs. Each “+” will
force the note up an octave; each “-” forces it down. This modifier is handy in creating bass patterns
when you wish to alternate between the root note and the root up an octave ... but users will find other
interesting patterns. There is no limit to the number of “+”s or “-”’s. You can even use both together if
you’re in a mood to obfuscate.

The note offset can be further modified with a single accidental “#”, “&”, “B” or “b”. This modifier will
raise or lower the note by a semitone.” In the boogie-woogie library file a “6#” is used to generate a
dominant 7th.

Bass Define Broken8 1 8 1 90 ; \
2 85 80 ; \
383090 ; \
4 8 1+ 80

Sheet Music Equivalent

“\\#

) [

r

4 N
S e

Example 4.1: Bass Definition

Example 4.1 defines 4 bass notes (probably staccato eight notes) at beats 1, 2, 3 and 4 in a § time bar. The
first note is the root of the chord, the second is the fifth; the third note is the third; the last note is the root
up an octave. The volumes of the notes are set to a MIDI velocity of 90 for beats 1 and 3 and 80 for beats
2 and 4.

MiA refers to note tables to determine the “scale” to use in a bass pattern. Each recognized chord type has

TP

an associated scale. For example, the chord “Cm” consists of the notes “c”, “eb” and “g”; the scale for this

"Be careful using this feature . .. certain scales/chords may return non-musical results.

30

4.1 Defining a Pattern Patterns

chord is “c, d, eb, f, g, a, b”.

Due to the ease in which specific notes of a scale can be specified, BASS tracks and patterns are useful for
much more than “bass” lines! These tracks are useful for sustained string voices, interesting arpeggio and
scale lines, and counter melodies.

4.1.2 Chord

A CHORD pattern is defined with:
Position Duration Volumel Volume2 ...;

Each group consists of an beat offset for the start point, the note duration, and the volumes for each note
in the chord. If you have fewer volumes than notes in a chord, the last volume will apply to the remaining
notes.

Chord Define Straight4+3 1 4 100 ; \
90 ; \

100 ;\

90 ; \

380 ; \

3 80

oo b WN
oW Wb h

Sheet Music Equivalent

#

¢

3§ 777

Example 4.2: Chord Definition

Example 4.2 defines a § pattern in a quarter, quarter, quarter, triplet thythm. The quarter notes sound on
beats 1, 2 and 3; the triplet is played on beat 4. The example assumes that you have C major for beats 1
and 2, and G major for 3 and 4.

Using a volume of “0” will disable a note. So, you want only the root and fifth of a chord to sound, you
could use something like:

Chord Define Dups 1 8 90 0 90 0; 3 8 90 0 90 O

31

4.1 Defining a Pattern Patterns

4.1.3 Arpeggio

An ARPEGGIO pattern is defined with:
Position Duration Volume ;

The arpeggio tracks play notes from a chord one at a time. This is quite different from chords where the
notes are played all at once—refer to the STRUM directive (page 229).

Each group consists of an beat offset, the note duration, and the note volume. You have no choice as to
which notes of a chord are played (however, they are played in alternating ascending/descending order.?)

The volume is applied to the specified note in the pattern.

Arpeggio Define 4s 1 4 100; \

2 4 90; \
3 4 100; \
4 4 100
Sheet Music Equivalent
@
@ @
o) &

Example 4.3: Arpeggio Definition

Example 4.3 plays quarter note on beats 1, 2, 3 and 4 of a bar in § time.

414 Walk

A WALKing Bass pattern is defined with:
Position Duration Volume ;

Walking bass tracks play up and down the first part of a scale, paying attention to the “color” of the chord.
Walking bass lines are very common in jazz and swing music. They appear quite often as an “emphasis”
bar in marches.

8See the DIRECTION command (page 222).

9The color of a chord are items like “minor”, “major”, etc. The current walking bass algorithm generates acceptable
(uninspired) lines. If you want something better there is nothing stopping you from using a RIFF to over-ride the computer
generated pattern for important bars.

32

4.1 Defining a Pattern Patterns

Each group consists of an beat offset, the note duration, and the note volume. M1 selects the actual note
pitches to play based on the current chord (you cannot change this).

Walk Define Walk4 1 4 100 ; \
2 4 90; \
34 90

Example 4.4: Walking Bass Definition

Example 4.4 plays a bass note on beats 1, 2 and 3 of a bar in } time.

4.1.5 Scale

A SCALE pattern is defined with:
Position Duration Volume ;

Each group consists of an beat offset for the start point, the note duration, and volume.

Scale Define S1 1 1 90
Scale Define S4 S1 x 4
Scale Define S8 S1 x 8

Example 4.5: Scale Definition

Example 4.5 defines three scale patterns: “S1” is just a single whole note, not that useful on its own, but it
is used as a base for “S4” and “S8”.

“S4” is 4 quarter notes and “S8” is 8 eight notes. All the volumes are set to a MIDI velocity of 90.

Scale patterns are quite useful in endings. More options for scales detailed in the SCALEDIRECTION
(page 222) and SCALETYPE (page 228) sections.

4.1.6 Aria

An ARIA pattern is defined with:
Position Duration Volume ;

much like a scale pattern. Please refer to the the ARIA section (page 92) for more details.

33

4.1 Defining a Pattern Patterns

4.1.7 Plectrum

An PLECTRUM pattern is defined with:
Position Strum Volumel Volume2 ...;

Note the absence of a duration setting. For details, please refer to the the PLECTRUM section (page 85)
for more details.

4.1.8 Drum

Drum tracks are a bit different from the other tracks discussed so far. Instead of having each track saved
as a separate MIDI track, all the drum tracks are combined onto MIDI track 10.

A Drum pattern is defined with:

Position Duration Volume;

Drum Define S2 1 0 100; \
2 0 80 ; \
3 0 100 ; \
4 0 80

Example 4.6: Drum Definition

Example 4.6 plays a drum sound on beats 1, 2, 3 and 4 of a bar in § time. The MIDI velocity (volume) of
the drum is 100 on beats 1 and 3; 80 on beats 2 and 4.

This example uses the special duration of “0”, which indicates 1 MIDI tick.

4.1.9 Drum Tone

Essential to drum definitions is the TONE directive.

When a drum pattern is defined it uses the default “note” or “tone” which is a snare drum sound. But,
this can (and should) be changed using the TONE directive. This is normally issued at the same time as a
sequence is set up (see chapter 5).

TONE is a list of drum sounds which match the sequence length. Here’s a short, concocted example (see
the library files for many more):

34

4.2 Including Existing Patterns in New Definitions Patterns

Drum Define S1 1 0 90

Drum Define S2 S1 * 2

Drum Define S4 S1 * 4

SeqClear

SeqgSize 4

Drum Sequence S4 S2 S2 sS4

Drum Tone SnareDruml SideKick LowToml Slap

Here the drum patterns “S2” and “S4” are defined to sound a drum on beats 1 and 3, and 1, 2, 3 and 4
respectively (see section 4.3 for details on the “*” option). Next, a sequence size of 4 bars and a drum
sequence are set to use this pattern. Finally, 2 is instructed to use a SnareDruml sound in bar 1, a
SideKick sound in bar 2, a LowTom1 in bar 3 and a Slap in bar 4. If the song has more than four bars, this
sequence will be repeated.

In most cases you will probably use a single drum tone name for the entire sequence, but it can be useful
to alternate the tone between bars.

To repeat the same “tone” in a sequence list, use a single “/”.

The “tone” can be specified with a MIDI note value or with a symbolic name. For example, a snare drum
could be specified as “38” or “SnareDrum1”. Appendix A.3 lists all the defined symbolic names.

It is possible to substitute tone values. See the TONETR command (see page 214).

4.2 Including Existing Patterns in New Definitions

When defining a pattern, you can use an existing pattern name in place of a definition grouping. For
example, if you have already defined a chord pattern (which is played on beats 1 and 3) as:

Chord Define M13 1 4 80; 3 4 80

you can create a new pattern which plays on same beats and adds a single push note just before the third
beat:

Chord Define M1+3 M13; 2.5 16 80 O
A few points to note:
JJ the existing pattern must exist and belong to the same track,
JJ the existing pattern is expanded in place,

JJ it is perfectly acceptable to have several existing definitions, just be sure to delimit each with a «;”,

JJ the order of items in a definition does not matter, each will be placed at the correct position in the
bar.

This is a powerful shortcut in creating patterns. See the included library files for examples.

35

4.3 Multiplying and Shifting Patterns Patterns

4.3 Multiplying and Shifting Patterns

Since most pattern definitions are, internally, repetitious, you can create complex rhythms by multiplying
a copy of an existing pattern. For example, if you have defined a pattern to play a chord on beats 1 though
4 (a quarter note strum), you can easily create a similar pattern to play eighth note chords on beats 1, 1.5,
etc. though 4.5 with a command like:

Track Define NewPattern OldPattern * N

where “Track” is a valid track name (“‘Chord”, “Walk”, “Bass”, “Arpeggio” or “Drum”, as well as “Chord2”
or “DRUM3”, etc.).

The “*” is absolutely required.

“N” can be any integer value between 2 and 100.

Drum Define S1 1 1 100
Drum Define S13 S1 * 2
Drum Define S1234 S1 x 4
Drum Define S8 S1234 » 2
Drum Define S16 S8 *x 2
Drum Define S32 S16 x 2
Drum Define S64 S1 * 64

Example 4.7: Multiply Define

In example 4.7 a Drum pattern is defined which plays a drum tone on beat 1 (assuming § time). Then a
new pattern, “S13”, is created. This is the old “S1” multiplied by 2. This new pattern will play a tone on
beats 1 and 3.

Next, “S1234” is created. This plays 4 notes, one the each beat.

Note the definition for “S64”: “S32” could have been multiplied by 2, but, for illustrative purposes, “S1”
has been multiplied by 64—same result either way.

When 94 multiplies an existing pattern it will (usually) do what you expect. The start positions for all
notes are adjusted to the new positions; the length of all the notes are adjusted (quarter notes become
eighth notes, etc.). No changes are made to note offsets or volumes.

Example 4.8 shows how to get a swing pattern which might be useful on a snare drum.

To see the effects of multiplying patterns, create a simple test file and process it though M7 with the “-p”
option.

Even cooler'? is combining a multiplier, and existing pattern and a new pattern all in one statement. The
following is quite legal (and useful):

107n this case the word “cool” substitutes for the more correct “useful”.

36

4.3 Multiplying and Shifting Patterns Patterns

Begin Drum Define
SB8 1 2+16 90 ; 3.66 4+32 80
SB8 SB8 * 4

End

Sheet Music Equivalent, Normal Notation

i‘-‘

Sheet Music Equivalent, Actual Rhythm
—3

A Y VS Y S

4

Example 4.8: Swing Beat Drum Definition

Drum Define D1234 1 0 90 * 4
which creates drum hits on beats 1, 2, 3 and 4.
More contrived (but examples are needed) is:
Drum Define Dfunny D1234 % 2; 1.5 0 70 *x 2
If you’re really interested in the result, run M4 with the “-p” option with the above definition.

An existing pattern can be modified by shifting it a beat, or portion of a beat. This is done in a MA
definition with the SHIFT directive. Example 4.9 shows a triplet pattern created to play on beat 1, and then
a second pattern played on beat 3.

Note that the shift factor can be a negative or positive value. It can be fractional. Just be sure that the
factor doesn’t force the note placement to be less than 1 or greater than the TIME setting.

And, just like the multiplier discussed earlier you can shift patterns as they are defined. And shifts and
multipliers can be combined. So, to define a series of quarter notes on the offbeat you could use:

Drum Define D1234’' 1 0 90 » 4 Shift .5

which would create the same pattern as the longer:

37

4.3 Multiplying and Shifting Patterns Patterns

Chord Define C1-3 1 3 90; \
1.33 3 90; 1.66 3 90

¢

Chord Define C3-3 Cl1l-3 Shift 2

SE 443

Example 4.9: Shift Pattern Definition

:

Drum Define D1234’ 1.5 1 90; 2.5 1 90; 3.5 1 90; 4.5 1 90

38

Chapter 5

Sequences

Patterns by themselves don’t do much good. They have to be combined into sequences to be of any use to
you or to MiA.

5.1 Defining Sequences

A SEQUENCE command sets the pattern(s) used in creating each track in your song:
Track Sequence Patternl Pattern2
“Track” can be any valid track name: “Chord”, “Walk”, “Walk-Sus”, “Arpeggio-88”, etc.

All pattern names used when setting a sequence need to be defined when this command is issued; or you
can use what appears to be a pattern definition right in the sequence command by enclosing the pattern
definition in a set of curly brackets “{ }”.

SeqgClear
SegSize 2
Begin Drum
Sequence Snare4
Tone Snaredruml
End
Begin Drum-1
Sequence Bassl Bass2
Tone KickDrum2
End
Chord Sequence Broken8
Bass Sequence Broken8
Arpeggio Sequence { 1 1 100 » 8 } {11
80 » 4 }

Example 5.1: Simple Sequence

39

5.1 Defining Sequences Sequences

Example5.1 creates a 2 bar pattern. The Drum, Chord and Bass patterns repeat on every bar; the Drum-1
sequence repeats after 2 bars. Note how the Arpeggio pattern is defined at run-time.!

If there are fewer patterns than SEQSIZE, the sequence will be filled out to correct size. If the number of
patterns used is greater than SEQSIZE (see chapter 29) a warning message will be printed and the pattern
list will be truncated.

When defining longer sequences, you can use the “repeat” symbol, a single “/”, to save typing. For
example, the following two lines are equivalent:

Bass Sequence Bassl Bassl Bass2 Bass2
Bass Sequence Bassl / Bass2 /

€ 9

The special pattern name (no quotes, just a single hyphen), or a single “z” can be used to turn a track
off. For example, if you have set the sequences in example 5.1 and decide to delete the Bass halfway
though the song you could:

Bass Sequence -

(X3 66 %

The special sequences, “-” or “z”, are also the equivalent of a rest or “tacet” sequence. For example, in
defining a 4 bar sequence with a bass pattern on the first 3 bars and a walking bass on bar 4 you might do
something like:

Bass Sequence Bass4-13 / / z
Walk Sequence z / / Walk4-4

If you already have a sequence defined” you can repeat or copy the existing pattern by using a single “*”
as the pattern name. This is useful when you are modifying an existing sequence.

For example, assume that we have created a four bar GROOVE called “Neato”. Now, we want to change
the CHORD pattern to use for an introduction ... but, we really only want to change the fourth bar in the
pattern:

Groove Neato
Chord Sequence * * * {1 2 90}
Defgroove NeatoIntro

When a sequence is created a series of pointers to the existing patterns are created. If you change the
definition of a particular pattern later in your file the new definition will have no effect on your existing
sequences.

Sequences are the workhorse of M. With them you can set up many interesting patterns and variations.
This chapter should certainly give more detail and many more examples.

Seqeuence definitions can get quite long and may need multiple lines. You can do this by using “\” marked
continuation lines. Or, to make it possible to have comments at the end of lines, M4 will parse SEQUENCE
lines and attempt to join lines together until a matching number of “{”s and “}”s are found. One caution:

'If you run 247 with the “-s” option you’ll see pattern names in the format “_1”. The leading underscore indicates that the
pattern was dynamically created in the sequence.
%In reality there is always a sequence defined for every track, but it might be a series of “rest” bars.

40

5.2 SeqClear Sequences

in order for this feature to work with multi-bar sequences you must have non-matching braces on a line.
For example, this will work:

Chord Sequence {1 4 90;
3490} {11 90}

This will not work:

Chord Sequence {1 4 90 }
{11 90}

In the second example M reads the first “{1 4 90} and figures that’s the end of the sequence. When if
finds the next line, it’s totally confused.

The following commands help manipulate sequences in your creations:

5.2 SeqClear

This command clears all existing sequences from memory. It is useful when defining a new sequence and
you want to be sure that no “leftover” sequences are active. The command:

SeqClear

deletes all sequence information, with the important exception that SOLO and STICKY (page 54) tracks
are ignored.

Alternately, the command:
Drum SeqClear
deletes all drum sequences. This includes the track “Drum”, “Drum1”, etc.
If you use a sub-track:
Chord-Piano SeqClear
only the sequence for that track is cleared.’
In addition to clearing the sequence pattern, the following other settings are restored to a default condition:
JJ Track Invert setting,
41 Track Sequence Rnd setting,
73 Track MidiSeq setting,

43 Track octave,

31t is probably easier to use the command:
Chord-Piano Sequence -

if that is what you want to do. In this case only sequence pattern is cleared.

41

5.3 SeqRnd Sequences

43 Track voice,

J3 Track Rvolume,
43 Track Volume,
41 Track RTime,

43 Track RDuration,
43 Track Strum.

CAUTION: It is not possible to clear only a track like DRUM or CHORD using this command. The
command

Chord SeqgClear
resets all CHORD tracks, whereas the command:
Chord-Foo SeqClear

resets the CHORD-FOO track. If you need to clear only the CHORD track use the “-” option.

5.3 SeqRnd

Normally, the patterns used for each bar are selected in order. For example, if you had a sequence:
Drum—-2 Sequence Pl P2 P3 z

bar 1 would use “P1”, bar 2 “P2”, etc. However, it is quite possible (and fun and useful) to insert a
randomness to the order of sequences. M can achieve this in three different ways:

1. Separately for each track:
Drum—-Snare SeqRnd On
2. Globally for all tracks:
SegRnd On
3. For a selected set of tracks (keeping the tracks synchronized):
SegRnd Drum-Snare Chord-2 Chord-3
To disable random sequencing:

SeqRnd Off
Drum SeqRnd Off

To illustrate the different effects you can generate, assume that you have a total of four tracks defined:
Drum-Snare, Drum-Low, Chord and Bass; your sequence size is 4 bars; and you have created some type
of sequence for each track with a commands similar to:

42

5.3 SeqRnd Sequences

Drum—-Snare Sequence D1 D2 D3 D4
Drum-Low Sequence D11 D22 D33 D44
Chord Sequence Cl C2 C3 C4

Bass Sequence Bl B2 B3 B4

With no sequence randomization at all, the tracks will be be processed as:

Bar
Track 1 2 3 4 5

Drum-Snare | D1 D2 D3 D4 D1
Drum-Low | D11 D22 D33 D44 D11

Chord |C1 C2 (C3 C4 (1

Bass | Bl B2 B3 B4 Bl

Next, assume we have set sequence randomization with:
SegRnd On
Now, the sequence may look like:

Bar
Track 1 2 3 4 5

Drum-Snare | D3 D1 D1 D2 D4
Drum-Low | D33 D11 DI11 D22 D44

Chord |C3 C1 C1 C2 (4

Bass | B3 Bl Bl B2 B4

Note that the randomization keeps the different sequences together: Drum sequences D3 and D33 are
always played with Chord sequence C3, etc.

Next, we will set randomization for a Drum and Chord track only:

Drum-Low SeqgRnd On
Chord SegRnd On
Bar

Track 1 2 3 4 5

Drum-Snare | D1 D2 D3 D4 Dl
Drum-Low | D22 D11 D44 D44 D33

Chord | C3 C4 (C2 C1 C1

Bass | Bl B2 B3 B4 Bl

In this case there is no relationship between any of the randomized tracks.

Finally, it is possible to set a “global” randomization for a selected set of tracks. In this case we will set
the Drum tracks only:

43

5.4 SeqRndWeight Sequences

SegqRnd Drum-Snare Drum-Low

Bar
Track 1 2 3 4 5

Drum-Snare | D3 D1 D4 D4 D2
Drum-Low | D33 D11 D44 D44 D22

Chord |C1 C2 (C3 C4 (1

Bass | Bl B2 B3 B4 Bl

Note that the drum sequences always “line up” with each other and the Chord and Bass sequences follow
in the normal order.

The SEQCLEAR command will disable all sequence randomization. The SEQ command will disable
“global” (for all tracks) randomization.

5.4 SeqRndWeight

When SEQRND is enabled each sequence for the track (or globally) has an equal chance of being selected.
There are times when you may want to change this behavior. For example, you might have a sequence like
this:

Chord Sequence Cl C2 C3 C4
and you feel that the patterns C1 and C2 need to be used twice as often as C3 and C4. Simple:
Chord SegRndWeight 2 2 1 1

Think of the random selection occurring like selecting balls out of bag. The SEQRNDWEIGHT command
“fills up the bag”. In the above case, there will be two C1 and C2 balls, one C3 and C4 ball— for a total
of six balls.

This command can be used in both a track and global context.
The effects are saved in GROOVES.

SEQCLEAR will reset both global and track contexts to the default (equal) condition.

5.5 SeqgSize

The number of bars in a sequence are set with the “SeqSize” command. For example:
SegSize 4
sets it to 4 bars. The SeqSize applies to all tracks.

This command resets the sequence counter to 1.

44

5.5 SeqSize Sequences

If some sequences have already been defined, they will be truncated or expanded to the new size. Trun-
cation is done by removing patterns from the end of the sequence; expansion is done by duplicating the

sequence until it is long enough.

45

Chapter 6

Grooves

Grooves, in some ways, are MA’s answer to macros ... but they are cooler, easier to use, and have a more
musical name.

Really, though, a groove is just a simple mechanism for saving and restoring a set of patterns and se-
quences. Using grooves it is easy to create sequence libraries which can be incorporated into your songs
with a single command.

6.1 Creating A Groove

A groove can be created at anytime in an input file with the command:
DefGroove SlowRhumba

Optionally, you can include a documentation string to the end of this command:
DefGroove SlowRumba A descriptive comment!

A groove name can include any character, including digits and punctuation. However, it cannot include a

@,

space character (used as a delimiter), a colon “:” ora’/’ 1

In normal operation the documentation strings are ignored. However, when # is run with the -Dx
command line option these strings are printed to the terminal screen in I&TEX format. The standard library
document is generated from this data. The comments must be suitable for IXTEX: this means that special
symbols like “#”, “&”, etc. must be “quoted” with a preceding “\”.

At this point the following information is saved:
73 Current Sequence size,

The current sequence for each track,

Time setting (quarter notes per bar),

“Accent”,

g 8 8 4

“Articulation” settings for each track,

43 “Compress”,

IThe °/> and ’:” are used in extended names.

46

6.1 Creating A Groove

JJ “Direction”,

71 “DupRoot”,

J1 “Harmony”,

J3 “HarmonyOnly”,

J “HarmonyVolume”,

73 “Invert”,

J1 “Limit”,

J1 “Mallet” (rate and decay),

71 “MidiSeq”,

J3 “MidiVoice”,

71 “MidiClear”

JJ “NoteSpan”,

41 “Octave”,

JJ “Range”,

JJ “RSkip”,

JJ “Rtime”,

JJ “RDuration”,

J3 “Rvolume”,

9 “Scale”,

71 “SeqRnd”, globally and for each track,
J1 “SeqRndWeight”, globally and for each track,
3 “Strum”,

J1 “SwingMode” Status and Skew,
J1 “Time Signature”,

43 “Tone” for drum tracks,

J1 “Unify”,

73 “Voice”,

71 “VoicingCenter”,

41 “VoicingMode”,

73 “VoicingMove”,

Grooves

47

6.2 Using A Groove Grooves

Iy
iy
iy

6.2

“VoicingRange”,
“Volume” for tracks and master,

“VolumeRatio”.

Using A Groove

You can restore a previously defined groove at anytime in your song with:

Groove Name

At this point all of the previously saved information is restored.

A few cautions:

%

9

Pattern definitions are not saved in grooves. Redefining a pattern results in a new pattern definition.
Sequences use the pattern definition in effect when the sequence is declared. In short, if you do
something like:

Chord Define MyPat 1 2.2 90

and use the pattern “MyPat” in a chord sequence and save that pattern into a groove you should be
careful not to refine “MyPat”.

On the other hand, if you dynamically define patterns for your sequences:
Chord Sequence {1 2.2 90}

you’ll be safe since you can’t change these kind of settings (other than by issuing a new SEQUENCE
command.

The “SeqSize” setting is restored with a groove. The sequence point is also reset to bar 1. If you
have multi-bar sequences, restoring a groove may upset your idea of the sequence pattern.

To make life (infinitely) more interesting, you can specify more than one previously defined groove. In
this case the next groove is selected after each bar. For example:

Groove Tango LightTango LightTangoSus LightTango

would create the following bars:

1.

2
3
4.
5

Tango

. LightTango
. LightTangoSus

LightTango

. Tango

48

6.2 Using A Groove Grooves

Note how the groove pattern wraps around to the first one when the list is exhausted. There is no way to
select an item from the list, except by going though it.

You might find this handy if you have a piece with an alternating time signature. For example, you might
have a § § song. Rather than creating a 2 bar groove, you could do something like:

Groove Groove34 Groove4d4
For long lists you can use the “/” to repeat the last groove in the list. The example above could be written:
Groove Tango LightTango LightTangoSus /

When you use the “list” feature of GROOVEs you should be aware of what happens with the bar sequence
number. Normally the sequence number is incremented after each bar is processed; and, when a new
groove is selected the sequence number is reset (see SEQ, page 228). When you use a list which changes
the GROOVE after each bar the sequence number is reset after each bar ... with one exception: if the same
GROOVE is being used for two or more bars the sequence will not be reset.”

Another way to select GROOVEs is to use a list of grooves with a leading value. This lets you select
the GROOVE to use based on the value of a variable ... handy if you want different sounds for repeated
sections. Again, an example:

Set loop 1 // create counter with value of 1

Repeat
Groove $loop BossaNovaSus BossaNovalSus BossaNovaFill
print This is loop $Loop ...Groove is $ _Groove
1A/ Am

Inc Loop // Bump the counter value
RepeatEnd 4

If you use this option, make sure the value of the counter is greater than 0. Also, note that the values larger
than the list count are “looped” to be valid. The use of “/”’s for repeated names is also permitted. For an
example have a look at the file grooves.mma, included in this distribution. You could get the same results
with various “if” statements, but this is easier.

6.2.1 Extended Groove Notation

In addition to only loading a new groove by using the name of a GROOVE you can also set the specific file
that the GROOVE exists in by using a filename prefix:

Groove stdlib/rhumba:rhumbaend

would load the “RhumbaEnd” groove from the file rhumba.mma file located in the stdlib directory. In
most cases the use of an extended groove name is only required once (if at all) since the command forces
the file containing the named groove to be completely read and all grooves defined in that file will now be
in memory and available with simple GROOVE commands.

2 Actually, M checks to see the next GROOVE in the list is the same as the current one, and if it is then no change is done.

49

6.2 Using A Groove Grooves

Extended groove names, in just about all cases, eliminate the need for the USE command. For a complete
understanding you should also read the PATHS section, page 249, of this manual.

@,

Important: The filename to the left of the ““:” is a system pathname, not a M4 variable. As such it must
match the case for the filename/path on your system. If, for example, you have a file casio/poprockl.
mma and attempt to access it with GROOVE Casio/Poprockl:PopRocklEnd it will not work. You must
use the form GROOVE casio/poprockl:PopRocklEnd. The case of the data to the right of the “:” is not
important.

When using an extended name, you (probably) only need to use the full name once ... the entire file is
read into memory making all of its content available. For a, contrived, example:

1. Assume you have two files, both called swing.mma. One file is in std1ib; the other in mylib. Both
directories can be found in PATHLIB.

2. stdlib/swing.mma defines grooves “gl”, “g2”, “g3” and “gspecial”.
3. mylib/swing.mma defines grooves “gl”, “g2” and “g3”. It does not define “gspecial”.
4. Near the top of your song file you issue:
Groove mylib/swing:gl
The file mylib/swing.mma is read and the groove “gl” is enabled.
5. Later in the file you issue the command:
Groove g2
Since this groove is already in memory, it is enabled.
6. Next:
groove Gspecial

Since this groove is not in memory (it wasn’t in the file mylib/swing.mma) M now searches its
database files and finds the requested groove in stdlib/swing.mma. The file is read and “Gspecial”
is enabled.

7. Now you want to use groove “gl” again:
Groove gl

Since the file stdlib/swing.mma has been read the “gl” groove from mylib/swing.mma has been
replaced. You, probably, have the wrong groove in memory.

To help find problems you may encounter managing multiple libraries, you can enable the special warning
flag (see page 221):

Debug Groove=0n

which will issue a warning each time a GROOVE name is redefined. You must enable this option from
within a file; it is not available on the command line.

50

6.2 Using A Groove Grooves
6.2.2 Overlay Grooves

To make the creation of variations easier, you can use GROOVE in a track setting:
Scale Groove Funny

In this case only the information saved in the corresponding DEFGROOVE FUNNY for the SCALE track
will be restored. You might think of this as a “groove overlay”. Have a look at the sample song “Yellow
Bird” for an example.

When restoring track grooves, as in the above example, the SEQSIZE is not reset. The sequence size of
the restored track is adjusted to fit the current sequence size setting.

One caution with these “overlays” is that no check is done to see if the track you’re using exists. Yes, the
GROOVE must have been defined, but not the track. Huh? Well, you need to know a bit about how M4
parses files and how it handles new tracks. When 27 reads a line in a file it first checks to see if the first
word on the line is a simple command like PRINT, MIDI or any other command which doesn’t require a
leading trackname. If it is, the appropriate function is called and file parsing continues. If it is not a simple
command M tests to see if it is a track specific command. But to do that, it first has to test the first word
to see if it is a valid track name like Bass or Chord-Major. And, if it is a valid track name and that track
doesn’t exist, the track is created ... this is done before the rest of the command is processed. So, if you
have a command like:

Bass-Foo Groove Something
and you really meant to type:

Bass-Foe Groove Something
you’ll have a number of things happening:

1. The track Bass-Foo will be created. This is not an issue to be concerned over since no data will be
created for this new track unless you set a SEQUENCE for it.

2. As part of the creation, all the existing GROOVESs will have the Bass-Foo track (with its default/empty
settings) added to them.

3. And the current setting you think you’re modifying with the Bass-Foe settings will be created with
the Bass-Foo settings (which are nothing).

4. Eventually you’ll wonder why 24 isn’t working.

So, be very careful using this command option. Check your spelling. And use the PRINTACTIVE com-
mand to verify your GROOVE creations. A basic test is done by #14 when you use a GROOVE in this
manner and if the sequence for the named track is not defined you will get a warning.

In most cases you will find the COPY command detailed on page 219 to be more robust.

51

6.3 Groove Aliases Grooves

6.3 Groove Aliases

In an attempt to make the entire groove naming issue simpler, an additional command has been added.
More complication to make life simpler.

You can create an alias for any defined GROOVE name with:
DefAlias NewAlias SomeGroove
Now you can refer to the groove “SomeGroove” with the name “NewAlias”.
A few rules:
41 the alias name must not be the name of a currently defined groove,

JJ when defining a new groove you cannot use the name of an alias.

Groove aliases are a tool designed to make it possible to have a standard set of groove names in A usable
at the same time as the standard library.

There is a major difference between a groove alias and the simple act of assigning two names to the same
groove. Consider this snippet:

...define some things
Defgroove Good
Defgroove Good2

You now have both “good” and *“good2” assigned to the same set of sequences, etc. Now, lets change
something:

Groove Good
Chord Voice Accordion

Now, the groove “good” has an accordion voicing; “good2” still has whatever the old “good” had. Com-
pare this with:

...define some things
DefGroove Good
DefAlias Good2 Good

Now, make the same change:

Groove Good
Chord Voice Accordion

By using an alias “good2” now points to the changed “good”.

52

6.4 AllGrooves Grooves

6.4 AllGrooves

There are times when you wish to change a setting in a set of library files. For example, you like the
Rhumba library sounds, but, for a particular song you’d like a punchier bass sound. Now, it is fairly easy
to create a new library file for this; or you can set the new bass settings each time you select a different
GROOVE.

Much easier is to apply your changes to all the GROOVEs in the file. For example:

Use Rhumba

Begin AllGrooves
Bass Articulate 50
Bass Volume +20
Walk Articulate 50
Walk Volume +10
End

The ALLGROOVES command operates by applying its arguments to each GROOVE currently defined. This
includes the environment you are currently in, even if this is not a defined GROOVE.

You can use the command with or without a track modifier:
AllGrooves Volume p

or
AllGrooves Chord Octave 5

Everything after the directive is interpreted as a legitimate M command. A warning message will be
displayed if the command had no effect. The warning “No tracks affected with ...” will be displayed if
nothing was done. This could be due to a misspelled command or track name, or the fact that the specified
track does not exist.

If you want to “undo” the effect of the ALLGROOVES just import the library file again with:

Use stdlib/rhumba
Groove Rhumba

or remove all the current GROOVEs from memory with:

GrooveClear
Groove Rhumba

In both cases you’ll end up with the original GROOVE settings.
A few notes:

71 This command only effects GROOVEs which have been loaded into memory either by loading a
library file or otherwise creating a GROOVE.

53

6.5 Deleting Grooves Grooves

JJ The in memory grooves can all have different sequence sizes. Special code inhibits the printing of
warning messages when you use a too long list of commands. For example, “AllGrooves Chord
Octave 3 4 5 6” will not generate a warning with a groove with a sequence size of 2, it will just be
truncated.

41 Be careful what commands you use since they are applied rather blindly. For example, the command:
AllTracks BeatAdjust 2

will insert 2 additional beats for each GROOVE you have. So, if you have 10 GROOVESs you would
insert 20 beats. Not what you intended. TEMPO and other commands will cause similar problems.
Actually, BEATADIJUST is not permitted in ALLGROOVES, but it’s a cool example.

6.5 Deleting Grooves

There are times when you might want M to forget about all the GROOVESs in its memory. Just do a:
GrooveClear

at any point in your input file and that is exactly what happens. But, “why”, you may ask, “would one
want to do this?” One case would be to force the re-reading of a library file. For example, a library file
might have a user setting like:

If Ndef ChordVoice
Set ChordVoice Pianol
Endif

In this case you could set the variable “ChordVoice” before loading any of the GROOVEs in the file. All
works! Now, assume that you have a repeated section and want to change the voice. Simply changing the
variable does not work. The library file isn’t re-read since the existing GROOVE data is already in memory.
Using GROOVECLEAR erases the existing data and forces a re-reading of the library file.

Please note that low-level settings like MIDI track assignments are not changed by this command.

Groove aliases are also deleted with this command.

6.6 Sticky

In most cases the method used to save and restore grooves works just fine. However, you may want a
certain track be invisible to the groove mechanism. You may find this option convenient if you creating a
“click track” or if you are using triggers (see page 206) across different grooves.

Setting a track as STICKY

54

6.7 Library Issues Grooves

Drum-Testing Sticky True
solves the problem.

The command takes a single value of “True” or “False”. “On”, “1”, “Off” and “0” may also be used. The
only way a sticky track can become un-sticky is with a command like:

Drum-Testing Sticky False
You can set the sticky bit from a TRIGGER command as well. The results are the same.

Note: Sticky tracks are not deleted with the SEQCLEAR command.

6.7 Library Issues

If you are using a groove from a library file, you just need to do something like:
Groove Rhumba2
at the appropriate position in your input file.

One minor problem which may arise is that more than one library file has defined the same groove name.
This might happen if you have a third-party library file. For the proposes of this example, lets assume
that the standard library file “rhumba.mma” and a second file “xyz-rhumba.mma” both define the groove
“Rhumba2”. The auto-load (see page 246) routines which search the library database will load the first
“Rhumba2” it finds, and the search order cannot be determined. To overcome this possible problem, do a
explicit loading of the correct file. In this case, simply do:

Use xyz-rhumba

near the top of your file. And if you wish to switch to the groove defined in the standard file, you can
always do:

Use rhumba

just before the groove call. The USE will read the specified file and overwrite the old definition of
“Rhumba2” with its own.

This issue in covered in more detail on page 250 of this manual.

55

Chapter 7

Riffs

In previous chapters you were shown how to create a PATTERN which becomes a part of a SEQUENCE.
And how to set a musical style by defining a GROOVE.

These predefined GROOVEs are wonderful things. And, yes, entire accompaniment tracks can be created
with just some chords and a single GROOVE. But, often a bit of variety in the track is needed.

The RIFF command permits the setting of an alternate pattern for any track for a single bar—this overrides
the current SEQUENCE for that track.

The syntax for RIFF is very similar to that of DEFINE, with the exception that no pattern name is used.
You might think of RIFF as the setting of an SEQUENCE with an anonymous pattern.

A RIFF is set with the command:
Track Riff Pattern

where:

Track is any valid ¢ track name,

Pattern is any existing pattern name defined for the specified track, or a pattern definition following the
same syntax as a DEFINE. In addition the pattern can be a single “z”, indicating no pattern for the
specified track.

Following is a short example using RIFF to change the Chord Pattern:

Groove Rhumba

1 Fm7

2 Bb7

3 EbM7

Chord Riff 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70
4 Eb6 / Eb

5 Fm7

In this case there is a Rhumba Groove for the song; however, in bar 4 the melodic pattern is emphasized
by chording a quarter-note triplet over beats 3 and 4. In this case the pattern has been defined right in the
RIFF command.

The next example shows that RIFF patterns can be defined just like the patterns used in a sequence.

56

Drum Define Emph8 1 0 128 x 8
Groove Blues

1cC

2 G

Drum—-Clap Riff Emph8

3G

4 F

Drum—Clap Riff Emph8

5¢C

Here the Emph8 pattern is defined as a series of eighth notes. This is applied for the third and fifth bars.
If you compile and play this example you will hear a sporadic hand-clap on bar 3. The Drum-Clap track
was previously defined in the Blues GROOVE as random claps on beats 2 and 4—our RIFF changes this to
a louder volume with multiple hits.

(1]

The special pattern “z” can be used to turn off a track for a single bar. This is similar to using a “z” in the
SEQUENCE directive.

A few things to keep in mind when using RIFFs:

JJ Each RIFF is in effect for only one bar (see the discussion below about multiple RIFFs).

€6 %

J1 RIFF sequences are always enabled. Even if there is no sequence for a track, or if the “z” sequence
is being used, the pattern specified in RIFF will apply.

JJ The existing voicing, articulation, etc. for the track will apply to the RIFF.

73 It’s quite possible to use a macro for repeated RIFFs. The following example uses a macro which
sets the VOLUME, ARTICULATE, etc. as well as the pattern. Note how the pattern is initially set as
single whole note, but, redefined in the RIFF as a run controlled by another macro. In bar 2 an eight
note run is played and in bar 5 this is changed to a run of triplets.

Mset CRiff
Begin Scale
Define Run 1 1 120
Riff Run * $SSpeed
Voice AltoSax
Volume £
Articulate 80
Rskip 5
End
MsetEnd
Groove Blues
1¢cC
Set SSpeed 8
SCRiff
2 G
3G
Set SSpeed 12

57

7.1 DupRiff Riffs

$SCRIFF
5C

71 A RIFF can only be deleted by using it (i.e., a music bar follows the setting), with a SEQCLEAR or
by a track DELETE.

RIFFs can also be used to specify a bar of music in a SOLO or MELODY track. Please see the “Solo and
Melody” chapter 10.

The above examples show how to apply a temporary pattern to a single bar—the bar which follows the
RIFF command. But, you can “stack”! a number of patterns to be processed sequentially. Each successive
RIFF command adds a pattern to the stack; these patterns are then “pulled” from the stack as successive
chord lines are processed.

Recycling an earlier example, lets assume that you want to use a customized pattern for bars 4 and 5 in a
mythical song:

Groove Rhumba

1 Fm7

2 Bb7

3 EbM7

Chord Riff 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70
Chord Riff 1 2 100; 3 8 90;

4 Eb6 / Eb

5 Fm7

In this example the first Chord Riff will be used in bar 4; the second in bar 5. For an example of this see
the sample file egs/riffs/riffs.mma

I often use this feature when creating a SOLO line.

7.1 DupRiff

In the above section we discussed the creation of RIFFs. In addition to being fun and useful in a specified
track, they can easily be duplicated between similar tracks with a single command:

Solo DupRiff Solo-1 Solo-2
will copy any pending RIFF data in the SOLO track to the SOLO-1 and SOLO-2 tracks.
A few rules:
J3 All the tracks must be of the same type. You can’t copy a RIFF from CHORD track to a SOLO, etc.
JJ The source track must have RIFF data to copy.

41 The destination track(s) must not have any pending RIFF data.

! Actually a queue or FIFO (First In, First Out) buffer.

58

7.1 DupRiff Riffs

The use of the DUPRIFF makes it very easy to manage data for solos with multiple instruments. For
example:

Begin Solo-1
Voice Flute
HarmonyOnly Open
End

Begin Solo
Voice Clarinet
Begin Riff
2g+; £+;
2e+; d+;
End
End

Solo DupRiff Solo-1

The above example creates two SOLO tracks. SOLO-1 will only play the harmony notes; SOLO will play
the melody. Without DUPRIFF you would need to duplicate the note data in both tracks, either line by line
or with a macro. Using DUPRIFF is much simpler.

You can reverse the action of this command so that it copies data from an existing track to the current one
with the use of the keyword FROM:

Solo DupRiff From Solo-1

copies the RIFF data from SOLO-1 and inserts it into SOLO. In this mode you can only from/to one track
at a time.

To keep this direction stuff all neat and tidy, you can use the optional keyword TO to duplicate the default
action.

Solo DupRiff To Solo-1 Solo-2

59

Chapter 8

Musical Data Format

Compared to patterns, sequences, grooves and the various directives used in M, the actual bar by bar
chord notations are surprisingly simple.

Any line in your input file which is not a directive or comment is assumed to be a bar of chord data.
A line for chord data consists of the following parts:
JJ Optional line number,
41 Chord or Rest data (with optional position indicator),
JJ Optional lyric data,
41 Optional solo or melody data,
JJ Optional multiplier.
Formally, this becomes:
[num] Chord [Chord ...] [lyric] [solo] [* Factor]
As you can see, all that is really needed is a single chord. So, the line:
Cm
is completely valid. As is:
10 Cm Dm Em Fm * 4

The optional solo or melody data is enclosed in “{ }”s. The complete format and use is detailed in the
Solo and Melody Tracks, page 73.

Lyrics are enclosed in ”’[] brackets. See the Lyrics chapter, page 66.

8.1 Bar Numbers

The optional leading bar number is silently discarded by M. It is really just a specialized comment which
helps you debug your music. Note that only a numeric item is permitted here.

60

8.2 Bar Repeat Musical Data Format

Get in the habit of using bar numbers. You’ll thank yourself when a song seems to be missing a bar, or
appears to have an extra one. Without the leading bar numbers it can be quite frustrating to match your
input file to a piece of sheet music.!

One important use of the leading bar number is for the -b command line option (page 17).

You should note that it is perfectly acceptable to have only a bar number on a line. This is common when
you are using bar repeat, for example:

1 Cm *x 4
2
3
4
5 A

In the above example bars 2, 3 and 4 are comment bars.

The command line option -L (details on page 18) can be used to display your line numbers at the end of a
run.

8.2 Bar Repeat

Quite often music has several sequential identical bars. Instead of typing these bars over and over again,
MA has an optional multiplier which can be placed at the end of a line of music data. The multiplier or
factor can is specified as “* NN” This will cause the current bar to repeated the specified number of times.
For example:

Cm / Dm / x 4

produces 4 bars of output with each the first 2 beats of each bar a Cm chord and the last 2 a Dm. (The “/”
is explained below.)

8.3 Chords

The most important part of a musical data line is, of course, the chords. You can specify a different chord
for each beat in your music. For example:

Cm Dm Em Fm

specifies four different chords in a bar. It should be obvious by now that in a piece in § you’ll end up with
a “Cm” chord on beat 1, “Dm” on 2, etc.

If you have fewer chord names than beats, the bar will be filled automatically with the last chord name on
the line. In other words:

'If your line numbers get out of order you can use the supplied utility mma-renum to renumber the comment lines. This
utility is installed in your default path or in the root #7 directory, depending on the distribution.

61

8.4 Rests Musical Data Format

Cm
and
Cm Cm Cm Cm
are equivalent (assuming 4 beats per bar). There must be one (or more) spaces between each chord.

One further shorthand is the “/” or “-”. This simply means to repeat the last chord (in the following
discussion we use “/”, but it all applies to “-” as well). So:

Cm / Dm /
1s the same as
Cm Cm Dm Dm

It is perfectly okay to start a line with a “/”. In this case the last chord from the previous line is used. If
the first line of music data begins with a *“/”” you’ll get an error— M tries to be smart, but it doesn’t read
minds. Having “/” at the end of the bar is a tad silly since MA just ends up throwing these away, but it
does no harm.

MiA recognizes a wide variety of chords in standard and Roman numeral notation. In addition, you can
specify slash chords, inversions, barre offsets, and shift the octave up or down. Refer to the complete table
in the appendix for details, page 257.

8.4 Rests

€6 % €69

To disable a voice for a beat you can use a “z” for a chord name. If used by itself a “z” will disable all
but the drum tracks for the given beat. However, you can disable “Chord”, “Arpeggio”, “Scale”, “Walk”,
“Aria”, or “Bass” tracks as well by appending a track specifier to the “z”. Track specifiers are the single
letters “C”, “A”, “S”, “W”, “B”, “R” or ‘D” and “!”. Track specifiers are only valid if you also specify a
chord. The track specifiers are:

D All drum tracks,

W All walking bass tracks,

B All bass tracks,

C All chord tracks,

A All arpeggio tracks,

S All scale tracks,

R All aria tracks,

P All plectrum tracks,

! All tracks (almost the same as DWBCAP, see below).

62

8.5 Positioning Musical Data Format

Assuming the “C” is the chord and “AB” are the track specifiers:
CzAB mutes the ARPEGGIO and BASS tracks,
z mutes all the tracks except for the drums,
Cz is not permitted,
zAB is not permitted.
Assuming that you have a drum, chord and bass pattern defined:
Fm z G7zC CmzD
would generate the following beats:
1 Drum pattern, Fm chord and bass,
2 Drum pattern only,
3 Drum pattern and G7 bass, no chord,
4 Cm chord and bass, no drum.

In addition, there is a super-z notation. “z!” forces all instruments to be silent for the given beats. “z!” is
the same as “zZABCDWR?”, except that the latter is not valid since it needs a prefixed chord.

The “z” notation is used when you have a “tacet” beat or beats. The alternate notations can be used to
silence specific tracks for a beat or two, but this is used less frequently.

8.5 Positioning

In earlier versions of #A4 all chords (and rests) were positioned on the beat, and one could only specify
a limited number of chord changes per bar. Using the enhanced positioning syntax an unlimited number
of chord changes per bar can be specified. But, please note the changes you hear in your song depend on
the specific pattern you are using! You might specify a chord at, for example, beat 2.25, but if the pattern
doesn’t sound a chord at that position it’s a bit silly.

As discussed above, a normal set of chord changes is entered like:
Cm / Dm
which sets a “Cm” for beats 1 and 2, and “Dm” for beats 3 to the bar end.

To modify this, you can use the “@” symbol along with an offset to indicate other changes. So, the above
example could also be written as:

Cm Dm@3

Changing on the “off beat” is simple as well. Consider,

63

8.6 Case Sensitivity Musical Data Format

C D@3.5 F

In this case the “C” chord is in effect from the first beat until beat 3.5, a “D” chord is set for 3.5 until 4,
and an “F” from 4 to the end of bar.

In parsing, when M4 finds a chord name without the “@” it assumes that the position is the next full beat
after the previous chord ... which means that in the above example “F” and “F@4” are equivalent.

71 The offset used must be 1 or greater and less than the value of the TIME parameter (page 120) plus
1. Any partial beat (2.33, 3.9, 1.25, etc.) is permitted.

71 Chords must be specified in order of their position in the bar. For example,
Cm Dm E@1.5
would generate an error.
93 No spaces are permitted between chord and the “@” symbol or between the “@” and the value.

71 The “@” must be at the end of the chord following any chord modifiers. The chords “+Cdim>-2@2.5”
and “E/G#@4” are perfectly acceptable.

8.6 Case Sensitivity

In direct conflict with the rest of the rules for input files, all chord names (and modifiers) are case sensitive.
This means that you can not use notations like “cm”—use “Cm” instead.

The “z” and the associated track specifiers are also case sensitive. For example, the form ‘“Zc” will not
work!

8.7 Track Chords

In most cases you want to have the same chords applied to all the different tracks in your song. However,
certain styles of music prove the “exception to the rule.” Certain hip-hop and rap styles use a repetitive
bass line or a melody snippet which doesn’t change—regardless of the underlying chord structure of the
piece.

In these cases, you can create a SEQUENCE and have it play using the same notes without having the
chords affect it.

A track specific chord is set just like the data described above. However, you cannot include a label, lyric,
repeat, or other modifier. Assuming a defined BASS and CHORD GROOVE, a simple example would be:

// set the bass line to use C on beats 1/2 and G on 3/4
Bass Chords C / G

1 C // set the main chord to C

2 G

64

8.7 Track Chords Musical Data Format

3C

In the above example the track-specific chords for the BASS are applied to all the subsequent bars in the
song.

To end the track-specific chords, use an empty argument or an empty { }:
Bass Chords

or
Bass Chords { }

You can set different chords in each bar of the sequence. In this case use curly brackets “{ }” around each
bar. So, assuming you have a 4 bar sequence:

Bass Chords {c} {G¢ / B7} {Dm} {C G A B}
will give you a different set of chords for each bar in the sequence.

You can easily repeat chord patterns for a subset of bars using a single “/”” (in this case the curly brackets
“{ }” are optional).

Chord Chords {I / 111} / / {V7}
or

Chord Chords {I / 111} { / } { / } {Vv7}

[

You can disable a track completely using the special rest notation “z”. If you have a empty setting for
some bars in the sequence, using an empty set of curly brackets “{ }’, that bar will use the chord set for
the rest of the song.

If using this for a DRUM track, remember that to mute a drum you will need to the the “z!” rest notation.

Since harmonies, detailed on page 112, also depend on chords you can create interesting effects by setting
a track specific chord in a SOLO or even SCALE track.

CHORDS set in this manner are saved in GROOVES, so they can be used to write interesting styles.

In most cases, you will be better off using ROMAN NUMERAL chords, details on page 265. Since the
chord data is stored as unmodified text, key changes will modify the chord (which is probably what you
want).

This option can also come in handy when you have a bass line set via slash chord names and the bass
notes are not part of the underlying chord. For example, you might have the chords snippet “Db/Eb
Eb/Db” which will generate 44 warnings. Since the “Eb” and “Db” are only needed for the bass line,
something like this will work nicely:

Bass Chords Eb Db
Db Eb
Bass Chords

Don’t forget to turn off the track specific chords!

65

Chapter 9
Lyrics

MIDI files can include song lyrics and some (certainly not all) MIDI file players and/or sequencers can
display them as a file is played. This includes newer ‘“arranger” keyboards and many software players.
Check your manuals.

The “Standard MIDI File” document describes a Lyric Meta-event:

FF 05 len text Lyric. A lyric to be sung. Generally, each syllable will will be a separate lyric
event which begins at the event’s time.!

Unfortunately, not all players and creators follow the specification—the most notable exception are ““.kar”
files. These files eschew the Lyric event and place their lyrics as a Text Event. There are programs strewn
on the net which convert between the two formats (but I really don’t know if conversion is needed).

If you want to read the word from the source, refer to the official MIDI lyrics documentation at http:
//www.midi.org/about-midi/smf/rp017.shtml. In addition, you may want to look at http://www.
midi.org/techspecs/rp26.php which discusses valid character sets in MIDI. For the most part, M7
doesn’t care what character set you use. But, to be safe, you should restrict yourself to using US ASCII
(CP-1252).

9.1 Lyric Options

MA has a number of options in setting lyrics. They are all called via the LYRIC command. Most options

“__9

are set as option/setting pairs with the option name and the setting joined with an “=".

9.1.1 Enable
By default the setting of lyrics is enabled. You can toggle this behavior with the ON or OFF option. For
example:

Lyric Off

disables the setting of lyrics, and:

T am quoting from “MIDI Documentation” distributed with the TSE Library. Pete Goodliffe, Oct. 21, 1999. You may be
able to get the complete document at http://tse3.sourceforge.net/docs.html

66

9.1 Lyric Options Lyrics

Lyric On

restores lyric creation. This option may be handy when you are inserting automatic chord names into the
lyric track.

9.1.2 Event Type

MA supports both format for lyrics (discussed above). The EVENT option is used to select the desired
mode.

Lyric EVENT=LYRIC
selects the default LYRIC EVENT mode.
Lyric EVENT=TEXT

selects the TEXT EVENT mode. Use of this option also prints a warning message.

9.1.3 Kar File Mode

As noted above, Karaoke or .kar files use a slightly different MIDI format for their lyrics. M supports
kar file creation with this mode:

Lyric KARMODE=0On
When this mode is entered the following changes are made:

7 The extension used for the MIDI file name is changed from .mid to kar (if you have specified an
output file name on the command line this is not done).

41 Some meta track information is changed to make it compatible with the kar useage.

(132

71 The word splitting algorithm is modified. In kar mode hyphens (“-”) are used to indicate syllable
breaks and are removed from the input. You can force a hyphen into your lyrics by using the notation

You can turn the mode off with:

Lyric KarMode=Off

Repeated mode switching is quite acceptable and may be useful in generating proper lyric breaks.

9.1.4 Word Splitting

Another option controlled by the LYRIC command is to determine the method used to split words. As
mentioned earlier (and in various MIDI documents), the lyrics should be split into syllables. #4 does
this by taking each word (anything with white space surrounding it) and setting a MIDI event for that.

67

9.2 Chord Name Insertion Lyrics

However, depending on your player, you might want only one event per bar. You might even want to put
the lyrics for several bars into one event. In this case simply set the “bar at a time” flag:

Lyric SPLIT=BAR
You can return to normal (syllable/word) mode at anytime with:

Lyric SPLIT=NORMAL

9.2 Chord Name Insertion

It is possible to have M duplicate the current chord names and insert them as a lyrics. The option:
Lyric CHORDS=On

will enable this. In this mode the chord line is parsed and inserted as verse one into each bar.

The mode is enabled with “On” or “1” and disabled with “Off” or “0”.

After the chords are extracted they are treated exactly like a verse you have entered as to word splitting,
etc. Note that the special chord “z” is converted to “N.C.” and directives after the “z” in constructs like
“C7zCS” will appear with only the chord name.

9.2.1 Chord Transposition

If you are transposing a piece or if you with to display the chords for a guitar with a capo you can tell
MiA to transpose the chord names inserted with CHORDS=ON. Just add a transpose directive in the LYRIC
command:

Lyric CHORDS=On Transpose=2
Please note that the Lyrics code does not look at the global TRANSPOSE setting.?

MiA isn’t too smart in it’s transposition and will often display the “wrong” chord names in relation to
“sharp” and “flat” names. If you find that you are getting too many “wrong” names, try setting the
CNAMES option to either “Sharp” or “Flat”. Another example:

Lyric CHORDS=0On Transpose=2 CNames=Flat

By default, the “flat” setting is used. In addition to “Flat” and “Sharp” you can use the abbreviations “#”,
“b” and “&,"

You can (and may well need to) change the CNAMES setting in a number of different places in the song.

This command supports the use of interval settings like the global TRANSPOSE (see page 231) setting
does; however, you must use hyphens to join the words (eg. Up-Perfect-Fourth).

2This is a feature! It permits you to have separate control over music generation and chord symbol display.

68

9.3 Setting Lyrics Lyrics

If the keyword ADD is included in the transpose value the current setting will be incremented or decre-
mented. To add this, use a comma separated string:

Lyric Chords=0On Transpose=3,Add
or

Lyric Chords=0On Transpose=Add, Up-Maj-2

9.3 Setting Lyrics

Adding a lyric to your song is a simple matter ... and like so many things, there is more than one way to
do it.

Lyrics can be set for a bar in-between a pair of []s somewhere in a data bar.> For example:

z [Pardon]

C[me, If I'm]]

E7 [sentimental, \r]
C [when we say good]

The alternate method is to use the LYRIC SET directive:

Lyric Set Hello Young Lovers

“__9

The SET option can be anywhere in a LYRIC line. The only restriction is that no signs are permitted
in the lyric. When setting the lyric for a single verse the []s are optional; however, for multiple verses
they are used (just like they are when you include the lyric in a data/chord line). The advantage to using
LYRIC SET is that you can specify multiple bars of lyrics at one point in your file. See the sample files in
egs/lyrics for examples.

The lyrics for each bar are separated into individual events, one for each word ... unless the option
SPLIT=BAR has been used, in which case the entire lyric is placed at the offset corresponding to the start
of the bar.

MiA recognizes two special characters in a LYRIC:

73 A \r is converted into an EOL character (hex value 0xOD). A \r should appear at the end of each
lyrical line.

71 A\nis converted into a LF character (hex value 0xOA). A \n should appear at the end of each verse
or paragraph.

When a multi-verse section is created using a REPEAT or GOTO, different lyrics can be specified for
different passes. In this case you simply specify two more sets of lyrics:

3 Although the lyric can be placed anywhere in the bar, it is recommended that you only place the lyric at the end of the bar.
All the examples follow this style.

69

9.3 Setting Lyrics Lyrics

A / Am / [First verse] [Second Verse]

However, for this work properly you must set the internal counter LYRICVERSE for any verse other than
1. This counter is set with the command:

Lyric Verse=Value | INC | DEC
This means that you can directly set the value (the default value is 1) with a command like:
Lyric Verse=2

And you can increment or decrement the value with the INC and DEC options. This is handy at to use in
repeat sections:

Lyric Verse=Inc
You cannot set the value to a value less than 1.
There are a couple of special cases:

JJ If there is only one set of lyrics in a line, it will be treated as text for verse 1, regardless of the value
of LYRICVERSE.

JJ If the value of LYRICVERSE is greater than the number of verses found after splitting the line, then
no lyrics are produced. In most cases this is probably not what you want.

At times you may wish to override MA’s method of determining the beat offsets for a lyric or a single
syllable in a lyric. You can specify the beat in the bar by enclosing the value in “< > brackets. For
example, suppose that your song starts with a pickup bar and you’d like the lyrics for the first bar to start
on beat 4:

Z z z C [<4>Hello]
F [Young lovers]

Assuming § the above would put the word “Hello” at beat 4 of the first bar; “Young” on the first beat of
bar 2; and “lovers” on beat 3 of bar 2.

Note: there must not be a space inside the “< >, nor can there be a space between the bracket and the
syllable it applies to.

Only the first “< >" is checked. So, if you really want to have the characters “<” or ”>" in a lyric just
include a dummy to keep M happy:

C [<><Verse_1l.>This is a Demo]

Example 9.14 shows a complete song with lyrics. You should also examine the file egs/lyrics.mma for
an alternate example.

9.3.1 Limitations

A few combinations are not permitted:

“Included in this distribution as songs/twinkle.mma.

70

9.3 Setting Lyrics Lyrics

Tempo 200
Groove Folk
Repeat
1 G [Twinkle,] [When the]
G [Twinkle] [blazing]
C [little] [sun is]
G [star; \r] [gone, \r]
Am [How I] [When he]
G [wonder] [nothing]
D7 [what you] [shines u-]
G [are. \r] [pon. \r]
9 G [Up a-] [then you]
10 D7 [bove the] [show your]
11 G [world so] [little]
12 D [high, \r] [light, \r]
13 G [Like a] [Twinkle,]
14 D7 [diamond] [twinkle,]
15 G [in the] [all the]
16 D7 [sky! \r] [night. \r]
17 G [Twinkle,]
18 G [twinkle]
19 C [Little]
20 G [star, \r]
21 Am [How I]
22 G [wonder]
23 D7 [what you]
24 G [are. \r \n]

oo JdJounbdWND

Lyric Verse=Inc
RepeatEnd

Example 9.1: Twinkle, Twinkle, Little Star

/1

9.3 Setting Lyrics Lyrics

43 You cannot specify lyrics in bars that are being repeated with the “*” option.

43 You cannot insert lyrics with LYRIC SET and [STUFF] into the same bar.

72

Chapter 10

Solo and Melody TracKs

So far the creation of accompaniment tracks using drum and chord patterns has been discussed. However,
there are times when chording (and chord variations such as arpeggios) are not sufficient. Sometimes you
might want a real melody line!

While reading this chapter, don’t forget that you can easily add HARMONY to your SOLO tracks (see
page 112 for details). You can even import (see MIDIINC page 184) an existing MIDI track (maybe a
melody you’ve plunked out on a keyboard) and have M insert that into your song as a SOLO and apply
ARTICULATION and HARMONY to it ... imagine how good you may sound!

MA has two internal track types reserved for melodic lines. They are the SOLO and MELODY tracks.
These two track types are identical with two major exceptions:

JJ SOLO tracks are only initialized once, at start up. Commands like SEQCLEAR are ignored by SOLO
tracks.

41 No settings in SOLO tracks are saved or restored with GROOVE commands.

These differences mean that you can set parameters for a SOLO track in a preamble in your music file and
have those settings valid for the entire song. For example, you may want to set an instrument at the top of
a song:

Solo Voice TenorSax

On the other hand, MELODY tracks save and restore grooves just like all the other available tracks. If you
have the following sequence in a song file:

Melody Voice TenorSax
Groove Blues
. .musical data

no one will be surprised to find that the MELODY track playing with the default voice (Piano).

As a general rule, MELODY tracks have been designed as a “voice” to accompany a predefined form
defined in a GROOVE—it is a good idea to define MELODY parameters as part of a GROOVE. SOLO tracks
are thought to be specific to a certain song file, with their parameters defined in the song file.

Apart from the exceptions noted above, SOLO and MELODY tracks are identical.

Before you create any SOLO or MELODY tracks you should set the key signature. See page 223 for details
on this important setting.

/3

10.1 Note Data Format Solo and Melody Tracks

In other available tracks you normally would define a SEQUENCE to play throughout the song. You can do
this (see below), but in most cases you specify a series of notes as a RIFF pattern. For example, consider
the first two bars of “Bill Bailey” (the details of melody notation will be covered later in this chapter):

Solo Riff 4c;2d;4f;

F

Solo Riff 4.a;8gt;4a; 4c+;
F

In the above example the melody has been inserted into the song with a series of RIFF lines. Specifying
a RIFF for each bar of your song can get tedious, so there is a shortcut ... any data surrounded by curly
brackets “{ }” is interpreted as a RIFF for a SOLO or MELODY track. This means that the above example
could be rewritten as:

F {4c;2d;4f;}

F {4.a;8g#;4a;4c+;}
By default the note data is inserted into the SOLO track. If more than one set of note data is present, it will
be inserted into the next track set by the AUTOSOLOTRACKS command (page 81).

Another method is to use a number of RIFF commands inside a BEGIN/END section. For example:

Begin Solo Riff

4c;2d;4f;
4.a;8gt#;4a; 4c+
End
F
F

If you look at the sample songs from our website http://www.mellowood.ca/mma/examples.html you
will see this used in many songs to create short introductions.

10.1 Note Data Format

The notes in a SOLO or MELODY track are specified as a series of “chords”. Each chord can be a single
note, or several notes (all with the same duration). Each chord in the bar is delimited with a single
semicolon.! Please note the terminology used here! When we refer to a “chord” we are referring to the
data a one point in the bar. It might be a single note, a number of notes, or a rest.

Each chord can have several parts. All missing parts will default to the value in the previous chord. The
order of the items is important: follow the order below.

Duration The duration of the note. This is specified in the same manner as chord patterns; see page 28
for details on how to specify a note duration. By default, a quarter note duration is used.

'T have borrowed heavily from the notation program MUP for the syntax used here. For notation I highly recommend MUP
and use it for most of my notation tasks, including the creation of the score snippets in this manual. MUP is available from
Arkkra Enterprises, http://www.Arkkra.com/.

74

10.1 Note Data Format Solo and Melody Tracks

The duration can also be set in MIDI ticks (192 ticks equals a quarter note) by appending a “t” or
“T” to an integer value. As an example, you could set a quarter note “c” as “4c” or “192tc”. You’ll
probably never use this option directly, but other parts of 94 can use it to generate solo note data.

Pitch Each note or pitch in the chord can be specified in a number of ways:

[IPei] (Y]

Firstly, you can use standard musical notation: the lowercase letters “a” to “g” are recognized, as
well as “r”’ to specify a rest.

Secondly, you can specify a note via its MIDI value. A MIDI value of 60 is the same as a “middle c”.
Important: if you specify a note using a MIDI value that note will not be adjusted for the OCTAVE
setting in the track or the key signature; however, TRANSPOSE will be applied.

Thirdly, in the case of Drum Solo Tracks, page 81, you can use MIDI values or mnemonic values
like “SnareDrum1”.

For notes in standard notation (“a” to “g”) the following modifiers are permitted directly after the
pitch:

Accidental A pitch modifier consisting of a single “#” (sharp), “&” (flat) or “n” (natural). Please
note that an accidental will override the current KEYSIG for the current bar (just like in real
musical notation). Unlike standard musical notation the accidental will apply to similarly
named notes in different octaves.

Please note that when you specify a chord in M4 you can use either a “b” or a “&” to represent
a flat sign; however, when specifying notes for a SOLO you can only use the “&” character.

Double sharps and flats are not supported.

Octave Without an octave modifier, the current octave specified by the OCTAVE directive is used
for the pitch(es). Any number of “-” or “+” signs can be appended to a note. Each “-” drops
the note by an octave and each “+” will increase it. The base octave begins with “c” below the
treble clef staff. The underlying track OCTAVE setting is applied to the modified pitch.

Velocity You can override the default MIDI velocity (M4 uses a value of 90) by appending a “/” and
a value between “0” and “127” after a pitch. This includes pitches in standard notation, drum
mnemonics and MIDI values. The velocity setting is applied to one note only. If you have a grouping
of notes like “abc/50” the c