MPFI 1.5.3.

Multiple Precision Floating-Point Interval Library
August 2010

Spaces, INRIA Lorraine,
Arenaire, INRIA Rhone-Alpes,
Lab. ANO, USTL (Univ. of Lille)

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the Free Software Foundation.

MPFI Copying Conditions

This library is free; this means that everyone is free to use it and free to redistribute it on a free
basis. The library is not in the public domain; it is copyrighted and there are restrictions on its
distribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further sharing
any version of this library that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the library,
that you receive source code or else can get it if you want it, that you can change this library
or use pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these
rights. For example, if you distribute copies of the MPFT library, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for the MPFI library. If it is modified by someone else and passed on, we want
their recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

The precise conditions of the license for the MPFTI library are found in the Lesser General Public
License that accompany the source code. As MPFTI is built upon MPFR and share its license,
see the file COPYING.LESSER in the main MPFR directory.

2 MPFT 1.5.3.

1 Introduction to MPFI

MPFT is intended to be a portable library written in C for arbitrary precision interval arithmetic
with intervals represented using MPFR reliable floating-point numbers. It is based on the GNU
MP library and on the MPFR library. The purpose of an arbitrary precision interval arithmetic
is on the one hand to get guaranteed results, thanks to interval computation, and on the other
hand to obtain accurate results, thanks to multiple precision arithmetic. The MPFI library is
built upon MPFR in order to benefit from the correct rounding provided, for each operation or
function, by MPFR. Further advantages of using MPFR are its portability and compliance with
the IEEE 754 standard for floating-point arithmetic.

This version of MPFTI is released under the GNU Lesser General Public License. It is permitted
to link MPFI to non-free programs, as long as when distributing them the MPFI source code
and a means to re-link with a modified MPFI is provided.

As interval arithmetic currently undergoes standardization, through the work of the IEEE-1788
working group, future versions of MPFI may evolve in order to reflect the standardized definitions
and behaviours.

2 Installing MPFI

To build MPFI, you first have to install MPFR (version 2.4.2 or above) on your computer. You
need a C compiler, preferably GCC, but any reasonable compiler should work. And you need a
standard Unix ‘make’ program, plus some other standard Unix utility programs.

Here are the steps needed to install the MPFI library on Unix systems. In the MPFT source
directory, type the following commands.

1.

‘./configure’
This will prepare the build and setup the options according to your system.

You can specify the path to GMP and MPFR libraries with configure options:
‘--with-gmp=DIR’ assumes that GMP is installed in the ‘DIR’ directory. Alternatively,
you can use the ‘--with-gmp-1ib=DIR’ and ‘--with-gmp-include=DIR’ to specify
respectively the GMP lib and GMP include directories. Options ‘--with-mpfr=DIR’,
‘——with-mpfr-include=DIR’, and ‘--with-mpfr-1ib=DIR’ have the same usage for the
MPFR library.

See the INSTALL file and the output of ‘. /configure --help’ for a description of standard
options.

‘make’

This will compile MPFI, and create a library archive file libmpfi.a. On most platforms, a
dynamic library will be produced too.

‘make check’

This will make sure MPFI was built correctly. If you get error messages from the test
program, please report this to ‘mpfi-users@lists.gforge.inria.fr’. (See Chapter 3
[Reporting Bugs|, page 5, for information on what to include in useful bug reports.)

‘make install’

This will copy the file mpfi.h to the directory /usr/local/include, the library files
(1ibmpfi.a and possibly others) to the directory /usr/local/lib, the file mpfi.info to
the directory /usr/local/share/info, and some other documentation files to the directory
/usr/local/share/doc/mpfi (or if you passed the ‘--prefix’ option to configure, using
the prefix directory given as argument to ‘--prefix’ instead of /usr/local).

There are some other useful make targets:

e ‘mpfi.info’ or ‘info’

Create an info version of the manual, in mpfi.info.

‘mpfi.pdf’ or ‘pdf’

Create a PDF version of the manual, in mpfi.pdf.

‘mpfi.dvi’ or ‘dvi’

Create a DVI version of the manual, in mpfi.dvi.

‘mpfi.ps’ or ‘ps’

Create a Postscript version of the manual, in mpfi.ps.

‘html’ Create a HTML version of the manual, in mpfi.html.

‘clean’

Delete all object files and archive files, but not the configuration files.

‘uninstall’ Delete all files copied by ‘make install’.

4 MPFT 1.5.3.

2.1 Known Build Problems

The installation procedure and MPFI itself have been tested only on some Linux distributions.
Since it has not been intensively tested, you may discover that MPFI suffers from all bugs of
the underlying libraries, plus many many more.

Please report any problem to ‘mpfi-users@lists.gforge.inria.fr’. See Chapter 3 [Reporting
Bugs], page 5.

2.2 Getting the Latest Version of MPFI
The latest version of MPFI is available from https://gforge.inria.fr/frs/?group_id=157.

https://gforge.inria.fr/frs/?group_id=157

3 Reporting Bugs
If you think you have found a bug in the MPFT library, please investigate it and report it. We
have made this library available to you, and we expect you will report the bugs that you find.

There are a few things you should think about when you put your bug report together.

You have to send us a test case that makes it possible for us to reproduce the bug. Include
instructions on how to run the test case.

You also have to explain what is wrong; if you get a crash, or if the results printed are incorrect
and in that case, in what way.

Please include compiler version information in your bug report. This can be extracted using ‘cc
-V’ on some machines or, if you're using gecc, ‘gcc -v’. Also, include the output from ‘uname
-a’, along with the version of GMP and of MPFR you use.

If your bug report is good, we will do our best to help you to get a corrected version of the
library; if the bug report is poor, we won’t do anything about it (except kidding you for sending
poor bug reports).

Send your bug report to: ‘mpfi-users@lists.gforge.inria.fr’.

If you think something in this manual is unclear, or downright incorrect, or if the language needs
to be improved, please send a note to the same address.

6 MPFT 1.5.3.

4 MPFI Basics

All declarations needed to use MPFI are collected in the include file mpfi.h. The declarations
useful for inputs and outputs are to be found in mpfi_io.h. It is designed to work with both C
and C++ compilers. You should include these files in any program using the MPFI library:

#include "mpfi.h"
#include "mpfi_io.h"

4.1 Nomenclature and Types
As MPFT is built upon MPFR, it is advisable to read MPFR’s manual first.

An interval is a closed connected set of real numbers, it is represented in MPFI by its endpoints
which are MPFR floating-point numbers. The C data type for these objects is mpfi_t.

MPFTI functions operate on valid intervals (defined below), their behavior with non-valid intervals
as input is undefined.

e A valid interval can have finite or infinite endpoints, but its left endpoint is not larger than
its right endpoint and cannot be +infinity or -0 (respectively, the right endpoint cannot
be -infinity or +0).! As a consequence, the unique representation of the zero singleton is
[+0, —0].

MPFT functions may return intervals that are not valid as input value. Their semantic defined
as follows:

e One (or both) NaN endpoint(s) indicates that an invalid operation has been performed and
that the resulting interval has no mathematical meaning.

e An empty interval has its left endpoint larger than its right endpoint.

Both the meaning of "invalid operation", the representation of the empty set and its handling
may change in future versions of MPFI, according to the standardization of interval arithmetic
in IEEE-1788.

Some functions on intervals return a floating-point value: among such functions are mpfi_get_
left that returns the left endpoint of an interval and mpfi_diam_abs that gets the width of the
input interval.

A Floating point number or Float for short, is an arbitrary precision mantissa with a limited
precision exponent. The C data type for such objects is mpfr_t.

The Precision is the number of bits used to represent the mantissa of a floating-point number;
the corresponding C data type is mp_prec_t (renamed mpfr_prec_t since MPFR version 3.0.0,
both types are compatible).

MPFI assumes that both endpoints of an interval use the same precision. However when this
does not hold, the largest precision is considered.

4.2 Function Classes

There is only one class of functions in the MPFTI library:

1 The restriction on the infinite values follows the definition of interval, and the sign of the zero bounds allows
a simple implementation of the four arithmetic operations as explained in the paper of T. Hickey, Q. Ju, and
M. H. Van Emden, Interval arithmetic: From principles to implementation (See [References], page 21).

Chapter 4: MPFI Basics 7

1. Functions for interval arithmetic based on floating-point numbers, with names beginning
with mpfi_. The associated type is mpfi_t. There are around 170 functions in this class.

4.3 MPFI Variable Conventions

As a general rule, all MPFI functions expect output arguments before input arguments. This
notation is based on an analogy with the assignment operator.

MPFT allows you to use the same variable for both input and output in the same expression.
For example, the function for the exponential, mpfi_exp, can be used like this: mpfi_exp (x,
x). This computes the set of exponentials of every real belonging to x and puts the result back
in x.

Before you can give a value to an MPFI variable, you need to initialize it by calling one of the
special initialization functions. When you’re done with a variable, you need to clear it out, using
one of the appropriate functions.

A variable should be initialized only once, or at least be cleared out between different initializa-
tions. After a variable has been initialized, it can be assigned any number of times.

For efficiency reasons, avoid to initialize and clear out a variable in loops. Instead, initialize it
before entering the loop, and clear it out after exiting the loop.

You don’t need to be concerned about allocating additional space for MPFI variables, since any
variable uses a memory space of fixed size. Hence unless you change its precision, or clear and
reinitialize it, an interval variable will have the same allocated space during all its lifetime.

8 MPFT 1.5.3.

5 Interval Functions

The interval functions expect arguments of type mpfi_t.

The MPFI interval functions have an interface that is close to the corresponding MPFR func-
tions. The function prefix for interval operations is mpfi_.

MPFT intervals are represented by their endpoints; this representation should be invisible to
the user, unfortunately it is not... It is assumed that both endpoints have the same precision;
however when this does not hold, the largest precision is considered. The user has to specify
the precision of each variable. A computation that assigns a variable will take place with the
precision of the assigned variable. For more information on precision (precision of a variable,
precision of a calculation), see the MPFR documentation.

5.1 Return Values

Four integer values (of C type int) can be returned by a typical mpfi function. These values
indicate whether none, one or two endpoints of the computed interval are exact: since they are
rounded values, they can differ from the exact result. Here are their names:

e MPFI_FLAGS_BOTH_ENDPOINTS_EXACT

e MPFI_FLAGS_LEFT_ENDPOINT_INEXACT: the left endpoint is inexact whereas the right end-
point is exact;

e MPFI_FLAGS_RIGHT_ENDPOINT_INEXACT: the right endpoint is inexact whereas the left end-
point is exact;

e MPFI_FLAGS_BOTH_ENDPOINTS_INEXACT

To test the exactness of one endpoint, the following functions are available (their names are
self-explanatory):

e MPFI_BOTH_ARE_EXACT

e MPFI_LEFT_IS_INEXACT
e MPFI_RIGHT_IS_INEXACT
e MPFI_BOTH_ARE_INEXACT

5.2 Precision Handling

The default computing precision is handled by MPFR, getting or setting its value is performed
using the following MPFR functions (cf. MPFR documentation):

void mpfr_set_default_prec (mp-prec-t prec) [Macro]
Sets the default precision to be exactly prec bits. The precision of a variable means the
number of bits used to store the mantissas of its endpoints. All subsequent calls to mpfi_
init will use this precision, but previously initialized variables are unaffected. This default
precision is set to 53 bits initially. The precision prec can be any integer between MPFR_PREC_
MIN and MPFR_PREC_MAX.

mp_prec_t mpfr_get_default_prec () [Macro]
Returns the default MPFR/MPFT precision in bits.

The following two functions are useful for changing the precision during a calculation. A typical
use would be for adjusting the precision gradually in iterative algorithms like Newton-Raphson,
making the computation precision closely match the actual accurate part of the numbers.

Chapter 5: Interval Functions 9

void mpfi_set_prec (mpfi_t x, mp_prec_t prec) [Function]
Resets the precision of x to be exactly prec bits. The previous value stored in x is lost. It is
equivalent to a call to mpfi_clear (x) followed by a call to mpfi_init2(x, prec), but more
efficient as no allocation is done in case the current allocated space for the mantissas of the
endpoints of x is enough. The precision prec can be any integer between MPFR_PREC_MIN and
MPFR_PREC_MAX. In case you want to keep the previous value stored in x, use mpfi_round_
prec instead.

mp_prec_t mpfi_get_prec (mpfi_t x) [Function]
Return the largest precision actually used for assignments of x, i.e. the number of bits used
to store the mantissas of its endpoints. Should the two endpoints have different precisions,
the largest one is returned.

int mpfi_round_prec (mpfi_t x, mp_prec_t prec) [Function]
Rounds x with precision prec, which may be different from that of x. If prec is greater or
equal to the precision of x, then new space is allocated for the endpoints’ mantissas, and they
are filled with zeroes. Otherwise, the mantissas are rounded outwards to precision prec. In
both cases, the precision of x is changed to prec. It returns a value indicating whether the
possibly rounded endpoints are exact or not, cf. Section 5.1 [Return Values|, page 8.

5.3 Initialization and Assignment Functions

5.3.1 Initialization Functions

An mpfi_t object must be initialized before storing the first value in it. The functions mpfi_init
and mpfi_init2 are used for that purpose.

void mpfi_init (mpfi_t x) [Function]
Initializes x, and sets its value to NaN, to prevent from using an unassigned variable inad-
vertently. Normally, a variable should be initialized once only or at least be cleared, using
mpfi_clear, between consecutive initializations. The precision of x is the default precision,
which can be changed by a call to mpfr_set_default_prec.

void mpfi_init2 (mpfi_-t x, mp_prec_t prec) [Function]
Initializes x, sets its precision (or more precisely the precision of its endpoints) to be exactly
prec bits, and sets its endpoints to NaN. Normally, a variable should be initialized once only
or at least be cleared, using mpfi_clear, between consecutive initializations. To change the
precision of a variable which has already been initialized, use mpfi_set_prec instead, or
mpfi_round_prec if you want to keep its value.

void mpfi_clear (mpfi-t x) [Function]
Frees the space occupied by the significands of the endpoints of x. Make sure to call this
function for all mpfi_t variables when you are done with them.

10 MPFT 1.5.3.

Here is an example on how to initialize interval variables:

{
mpfi_t x, y;
mpfi_init (x); /* use default precision */
mpfi_init2 (y, 256); /* precision exactly 256 bits */

/* Unless the program is about to exit, do ... */
mpfi_clear (x);
mpfi_clear (y);

5.3.2 Assignment Functions

These functions assign new values to already initialized intervals (see Section 5.3.1 [Initializing
Intervals|, page 9).

int mpfi_set (mpfi_-t rop, mpfi_t op) Function
int mpfi_set_ui (mpfi_-t rop, unsigned long int op) Function
int mpfi_set_si (mpfi-t rop, long int op) Function

int mpfi_set_z (mpfi_-t rop, mpz_t op) Function

int mpfi_set_q (mpfi_t rop, mpq-t op) Function

int mpfi_set_fr (mpfi_t rop, mpfr_t op) [Function]
Sets the value of rop from op, rounded outward to the precision of rop: op then belongs to
rop. The returned value indicates whether none, one or both endpoints are exact. Please
note that even a long int may have to be rounded, if the destination precision is less than
the machine word width.

[|
Funcion)
int mpfi_set_d (mpfi-t rop, double op) [Function]
[]
[]

int mpfi_set_str (mpfi_t rop, char *s, int base) [Function]
Sets rop to the value of the string s, in base base (between 2 and 36), outward rounded to
the precision of rop: op then belongs to rop. The exponent is read in decimal. The string
is of the form ‘number’ or ‘[numberl , number 2 1°. Each endpoint has the form ‘M@N’ or, if
the base is 10 or less, alternatively ‘MeN’ or ‘MEN’. ‘M’ is the mantissa and ‘N’ is the exponent.
The mantissa is always in the specified base. The exponent is in decimal. The argument base
may be in the ranges 2 to 36.

This function returns 1 if the input is incorrect, and 0 otherwise.

void mpfi_swap (mpfi_t x, mpfi_t y) [Function]
Swaps the values x and y efficiently. Warning: the precisions are exchanged too; in case
the precisions are different, mpfi_swap is thus not equivalent to three mpfi_set calls using a
third auxiliary variable.

5.3.3 Combined Initialization and Assignment Functions
int mpfi_init_set (mpfi_t rop, mpfi_t op) Function

[]
int mpfi_init_set_ui (mpfi_t rop, unsigned long int op) [Function]
int mpfi_init_set_si (mpfi_t rop, long int op) [Function]
[]
[]
[]

int mpfi_init_set_d (mpfi_t rop, double op) Function
int mpfi_init_set_z (mpfi-t rop, mpz-t op) Function
int mpfi_init_set_q (mpfi-t rop, mpq-t op) Function

Chapter 5: Interval Functions 11

int mpfi_init_set_fr (mpfi_t rop, mpfr_t op) [Function]
Initializes rop and sets its value from op, outward rounded so that op belongs to rop. The
precision of rop will be taken from the active default precision, as set by mpfr_set_default_
prec. The returned value indicates whether none, one or both endpoints are exact.

int mpfi_init_set_str (mpfi_t rop, char *s, int base) [Function]
Initializes rop and sets its value to the value of the string s, in base base (between 2 and 36),
outward rounded to the precision of rop: op then belongs to rop. The exponent is read in
decimal. See mpfi_set_str.

5.4 Interval Functions with Floating-point Results

Some functions on intervals return floating-point results, such as the center or the width, also
called diameter, of an interval.

int mpfi_diam_abs (mpfr_t rop, mpfi_t op) [Function]
Sets the value of rop to the upward rounded diameter of op, or in other words to the upward
rounded difference between the right endpoint of op and its left endpoint. Returns 0 if the
diameter is exact and a positive value if the rounded value is greater than the exact diameter.

int mpfi_diam_rel (mpfr_t rop, mpfi_t op) [Function]
Sets the value of rop to the upward rounded relative diameter of op, or in other words to the
upward rounded difference between the right endpoint of op and its left endpoint, divided by
the absolute value of the center of op if it is not zero. Returns 0 if the result is exact and a
positive value if the returned value is an overestimation, in this case the returned value may
not be the correct rounding of the exact value.

int mpfi_diam (mpfr_t rop, mpfi_t op) [Function]
Sets the value of rop to the relative diameter of op if op does not contain zero and to its
absolute diameter otherwise. Returns 0 if the result is exact and a positive value if the
returned value is an overestimation, it may not be the correct rounding of the exact value in
the latter case.

int mpfi_mag (mpfr_-t rop, mpfi_t op) [Function]
Sets the value of rop to the magnitude of op, i.e. to the largest absolute value of the elements
of op. Returns 0 if the result is exact and a positive value if the returned value is an
overestimation.

int mpfi_mig (mpfr_t rop, mpfi_t op) [Function]
Sets the value of rop to the mignitude of op, i.e. to the smallest absolute value of the
elements of op. Returns 0 if the result is exact and a negative value if the returned value is
an underestimation.

int mpfi_mid (mpfr_-t rop, mpfi_t op) [Function]
Sets rop to the middle of op. Returns 0 if the result is exact, a positive value if rop > the
middle of op and a negative value if rop < the middle of op.

void mpfi_alea (mpfr_t rop, mpfi_t op) [Function]
Sets rop to a floating-point number picked up at random in op, according to a uniform
distribution.

This function is deprecated and may disappear in future versions of MPFI; mpfi_urandom
should be used instead.

12 MPFT 1.5.3.

void mpfi_urandom (mpfr_t rop, mpfi_t op, gmp_randstate_t state) [Function]
Sets rop to a floating-point number picked up at random in op, according to a uniform
distribution.

The argument state should be initialized with one of the GMP random state initialization
functions (see Section “Random State Initialization” in GNU MP manual).

5.5 Conversion Functions

double mpfi_get_d (mpfi_t op) [Function]
Converts op to a double, which is the center of op rounded to the nearest double.

void mpfi_get_fr (mpfr_t rop, mpfi_t op) [Function]
Converts op to a floating-point number, which is the center of op rounded to nearest.

5.6 Basic Arithmetic Functions

int mpfi_add (mpfi_-t rop, mpfi_t opl, mpfi_t op2) [Function]
int mpfi_add_d (mpfi_t rop, mpfi_t op1, double op2) [Function]
int mpfi_add_ui (mpfi_t rop, mpfi_t op1, unsigned long int op2) [Function]
int mpfi_add_si (mpfi_-t rop, mpfi_t op1, long int op2) [Function]
int mpfi_add_z (mpfi_t rop, mpfi_t opl, mpz_t op2) [Function]
int mpfi_add_q (mpfi_t rop, mpfi_t opl, mpq-t op2) [Function]

]

int mpfi_add_fr (mpfi_t rop, mpfi_t opl, mpfr_t op2) [Function
Sets rop to opl + op2. Returns a value indicating whether none, one or both endpoints are
exact.

int mpfi_sub (mpfi_t rop, mpfi_t opl, mpfi_t op2) Function)]
int mpfi_sub_d (mpfi_t rop, mpfi_t op1, double op2) Function
int mpfi_d_sub (mpfi_t rop, double opl, mpfi_t op2) Function
int mpfi_sub_ui (mpfi_t rop, mpfi_t op1, unsigned long int op2) Function
int mpfi_ui_sub (mpfi_t rop, unsigned long int opl, mpfi_t op2) Function
int mpfi_sub_si (mpfi_t rop, mpfi_t op1, long int op2) Function

[
[
[
[
|
int mpfi_si_sub (mpfi_t rop, long int opl, mpfi_t op2) [Function
[
[
[
[
[

int mpfi_sub_z (mpfi_t rop, mpfi_t opl, mpz_t op2) Function
int mpfi_z_sub (mpfi_t rop, mpz_t opl, mpfi_t op2) Function
int mpfi_sub_q (mpfi_t rop, mpfi_t opl, mpq-t op2) Function
int mpfi_q_sub (mpfi_t rop, mpq_-t opl, mpfi_t op2) Function
int mpfi_sub_fr (mpfi_t rop, mpfi_t opl, mpfr_t op2) Function

int mpfi_fr_sub (mpfi_t rop, mpfr_t op1, mpfi_t op2) [Function
Sets rop to opl — op2. Returns a value indicating whether none, one or both endpoints are
exact.

int mpfi_mul (mpfi_t rop, mpfi_t opl, mpfi_t op2) Function
int mpfi_mul_d (mpfi_t rop, mpfi_t op1, double op2) Function
int mpfi_mul_ui (mpfi_t rop, mpfi_t op1, unsigned long int op2) Function

[}
Function
int mpfi_mul_si (mpfi_t rop, mpfi_t op1, long int op2) [Function]
[]
[]
[]

int mpfi_mul_z (mpfi_t rop, mpfi_t opl, mpz_t op2) Function
int mpfi_mul_q (mpfi_t rop, mpfi_t opl, mpq-t op2) Function
int mpfi_mul_fr (mpfi_t rop, mpfi_t opl, mpfr_t op2) Function

Sets rop to opl * op2. Multiplication by an interval containing only zero results in 0. Returns
a value indicating whether none, one or both endpoints are exact.

Chapter 5: Interval Functions 13

Division is defined even if the divisor contains zero: when the divisor contains zero in its interior,
the result is the whole real interval [—oo, co]. When the divisor has one of its endpoints equal to
0, the rules defined by the IEEE 754 norm for the division by signed zeroes apply: for instance,
[1,2]/[0%, 1] results in [1, 00]. In this example, both endpoints are exact.

The extended interval division, returning two semi-infinite intervals when the divisor contains
0, should be available soon.

int mpfi_div (mpfi_-t rop, mpfi_t opl, mpfi_t op2) Function
int mpfi_div_d (mpfi-t rop, mpfi_t op1, double op2) Function
int mpfi_d_div (mpfi-t rop, double opl, mpfi_t op2) Function
int mpfi_div_ui (mpfi_t rop, mpfi_t op1, unsigned long int op2) Function
int mpfi_ui_div (mpfi_-t rop, unsigned long int opl, mpfi_t op2) Function
int mpfi_div_si (mpfi_t rop, mpfi_t op1, long int op2) Function

[]
[|
[]
[}
Funcion)
int mpfi_si_div (mpfi_t rop, long int opl, mpfi_t op2) [Function]
[}
[}
[}
[}
[}
[]

int mpfi_div_z (mpfi_t rop, mpfi_t opl, mpz_t op2) Function
int mpfi_z_div (mpfi_t rop, mpz_t opl, mpfi_t op2) Function
int mpfi_div_q (mpfi_t rop, mpfi_t op1, mpq-t op2) Function
int mpfi_q_div (mpfi_t rop, mpq-t opl, mpfi_t op2) Function
int mpfi_div_fr (mpfi_t rop, mpfi_t opl, mpfr_t op2) Function
int mpfi_fr_div (mpfi_t rop, mpfr_t op1, mpfi_t op2) Function

Sets rop to opl/op2. Returns an indication of whether none, one or both endpoints are exact.

int mpfi_neg (mpfi_t rop, mpfi_t op) [Function]
Sets rop to —op. Returns an indication of whether none, one or both endpoints are exact.

int mpfi_sqr (mpfi_t rop, mpfi_t op) [Function]
Sets rop to op?. Returns an indication of whether none, one or both endpoints are exact.
Indeed, in interval arithmetic, the square of an interval is a nonnegative interval whereas the
product of an interval by itself can contain negative values.

int mpfi_inv (mpfi_t rop, mpfi_t op) [Function]
Sets rop to 1/op. Inversion is defined even if the interval contains zero: when the denominator
contains zero, the result is the whole real interval [—o0, oo]. Returns an indication of whether
none, one or both endpoints are exact.

int mpfi_sqrt (mpfi_-t rop, mpfi_t op) [Function]
Sets rop to /op. Sets rop to NaN if op is negative. Returns an indication of whether none,
one or both endpoints are exact.

int mpfi_cbrt (mpfi_-t rop, mpfi_t op) [Function]
Sets rop to the cubic root of op. Returns an indication of whether none, one or both endpoints
are exact.

int mpfi_abs (mpfi_t rop, mpfi_t op) [Function]
Sets rop to |op|, the absolute value of op. Returns an indication of whether none, one or
both endpoints are exact.

int mpfi_mul_2exp (mpfi_t rop, mpfi_t opl1, unsigned long int op2) [Function]
int mpfi_mul_2ui (mpfi_t rop, mpfi_t op1, unsigned long int op2) [Function]
int mpfi_mul_2si (mpfi_t rop, mpfi_t op1, long int op2) [Function]

Sets rop to opl x 2°P2. Returns an indication of whether none, one or both endpoints are
exact. Just increases the exponents of the endpoints by op2 when rop and opl are identical.

14 MPFT 1.5.3.

int mpfi_div_2exp (mpfi_t rop, mpfi_t opl1, unsigned long int op2) [Function]
int mpfi_div_2ui (mpfi_t rop, mpfi_t op1, unsigned long int op2) [Function]
int mpfi_div_2si (mpfi_t rop, mpfi_t op1, long int op2) [Function]

Sets rop to opl/2°?. Returns an indication of whether none, one or both endpoints are
exact. Just decreases the exponents of the endpoints by op2 when rop and opl are identical.

5.7 Special Functions

These functions are based on their MPFR, counterparts. For more information, see the MPFR
documentation or related bibliography.

int mpfi_log (mpfi_t rop, mpfi_t op) [Function]
Sets rop to the natural logarithm of op, with the precision of rop. Returns an indication of
whether none, one or both endpoints are exact. If op contains negative numbers, then rop
has at least one NaN endpoint.

int mpfi_exp (mpfi_t rop, mpfi_t op) [Function]
Sets rop to the exponential of op, with the precision of rop. Returns an indication of whether
none, one or both endpoints are exact.

int mpfi_exp2 (mpfi-t rop, mpfi_t op) [Function]
Sets rop to 2 to the power op, with the precision of rop. Returns an indication of whether
none, one or both endpoints are exact.

int mpfi_cos (mpfi_-t rop, mpfi_t op) [Function]
int mpfi_sin (mpfi_t rop, mpfi_t op) [Function]
int mpfi_tan (mpfi_t rop, mpfi_t op) [Function]

Sets rop to the cosine, sine or tangent of op, with the precision of rop. Returns an indication
of whether none, one or both endpoints are exact.

int mpfi_sec (mpfi_t rop, mpfi_t op) [Function]
int mpfi_csc (mpfi_t rop, mpfi_t op) [Function]
int mpfi_cot (mpfi_t rop, mpfi_t op) [Function]

Sets rop to the secant, cosecant or cotangent of op, with the precision of rop. Returns an
indication of whether none, one or both endpoints are exact.

int mpfi_acos (mpfi-t rop, mpfi_t op) [Function]
int mpfi_asin (mpfi-t rop, mpfi_t op) [Function]
int mpfi_atan (mpfi-t rop, mpfi_t op) [Function]

Sets rop to the arc-cosine, arc-sine or arc-tangent of op, with the precision of rop. Returns
an indication of whether none, one or both endpoints are exact.

int mpfi_atan2 (mpfi_t rop, mpfi_t opl, mpfi_t op2) [Function]
Sets rop to the arc-tangent2 of opl and op2, with the precision of rop. Returns an indication
of whether none, one or both endpoints are exact.

int mpfi_cosh (mpfi_t cop, mpfi_t op) [Function]
int mpfi_sinh (mpfi_t sop, mpfi_t op) [Function]
int mpfi_tanh (mpfi_t top, mpfi_t op) [Function]

Sets cop to the hyperbolic cosine of op, sop to the hyperbolic sine of op, top to the hyperbolic
tangent of op, with the precision of the result. Returns an indication of whether none, one
or both endpoints are exact.

Chapter 5: Interval Functions 15

int mpfi_sech (mpfi_t rop, mpfi_t op) [Function]
int mpfi_csch (mpfi_-t rop, mpfi_t op) [Function]
int mpfi_coth (mpfi_t rop, mpfi_t op) [Function]

Sets rop to the hyperbolic secant, cosecant or cotangent of op, with the precision of rop.
Returns an indication of whether none, one or both endpoints are exact.

int mpfi_acosh (mpfi_t rop, mpfi_t op) [Function]
int mpfi_asinh (mpfi_t rop, mpfi_t op) [Function]
int mpfi_atanh (mpfi_t rop, mpfi_t op) [Function]

Sets rop to the inverse hyperbolic cosine, sine or tangent of op, with the precision of rop.
Returns an indication of whether none, one or both endpoints are exact.

int mpfi_loglp (mpfi_-t rop, mpfi_t op) [Function]
Sets rop to the natural logarithm of one plus op, with the precision of rop. Returns an
indication of whether none, one or both endpoints are exact. If op contains negative numbers,
then rop has at least one NalN endpoint.

int mpfi_expml (mpfi_t rop, mpfi_t op) [Function]
Sets rop to the exponential of op, minus one, with the precision of rop. Returns an indication
of whether none, one or both endpoints are exact.

int mpfi_log2 (mpfi_t rop, mpfi_t op) [Function]

int mpfi_loglO (mpfi_t rop, mpfi_t op) [Function]
Sets rop to log, op, with t = 2 or 10 the base for the logarithm, with the precision of rop.
Returns an indication of whether none, one or both endpoints are exact. If op contains
negative numbers, then rop has at least one NaN endpoint.

int mpfi_hypot (mpfi_t rop, mpfi_t opl, mpfi_t op2) [Function]
Sets rop to the euclidean distance between points in opl and points in op2, with the precision
of rop. Returns an indication of whether none, one or both endpoints are exact.

int mpfi_const_log2 (mpfi_t rop) [Function]
int mpfi_const_pi (mpfi_t rop) [Function]
int mpfi_const_euler (mpfi_t rop) [Function]
int mpfi_const_catalan (mpfi_t rop) [Function]

Sets rop respectively to the logarithm of 2, to the value of 7, to the Euler’s constant, and to
the Catalan’s constant, with the precision of rop.

Returns an indication of whether none, one or both endpoints are exact.

5.8 Comparison Functions

The comparison of two intervals is not clearly defined when they overlap. MPFI proposes
default comparison functions, but they can easily be customized according to the user’s needs.
The default comparison functions return a positive value if the first interval has all its elements
strictly greater than all elements of the second one, a negative value if the first interval has all its
elements strictly lower than all elements of the second one and 0 otherwise, i.e. if they overlap
or if one is contained in the other.

int mpfi_cmp (mpfi_t opl, mpfi_t op2) []
int mpfi_cmp_d (mpfi_t op1, double op2) [Function]
int mpfi_cmp_ui (mpfi_-t op1, unsigned long int op2) []
int mpfi_cmp_si (mpfi_t op1, long int op2) []

16 MPFT 1.5.3.

int mpfi_cmp_z (mpfi_t opl, mpz_t op2) [Function]
int mpfi_cmp_q (mpfi_-t opl, mpq_-t op2) [Function]
int mpfi_cmp_fr (mpfi_t opl, mpfr_t op2) [Function]

Compares opl and op2. Return a positive value if opl > op2, zero if opl overlaps, contains
or is contained in op2, and a negative value if opl < op2. In case one of the operands is
invalid (which is represented by at least one NaN endpoint), it returns 1, even if both are
invalid.

int mpfi_is_pos (mpfi_t op) [Function]
Returns a positive value if op contains only positive numbers, the left endpoint can be zero.

int mpfi_is_strictly_pos (mpfi_t op) [Function]
Returns a positive value if op contains only positive numbers.

int mpfi_is_nonneg (mpfi_t op) [Function]
Returns a positive value if op contains only nonnegative numbers.

int mpfi_is_neg (mpfi_t op) [Function]
Returns a positive value if op contains only negative numbers, the right endpoint can be zero.

int mpfi_is_strictly_neg (mpfi_t op) [Function]
Returns a positive value if op contains only negative numbers.

int mpfi_is_nonpos (mpfi_t op) [Function]
Returns a positive value if op contains only nonpositive numbers.

int mpfi_is_zero (mpfi_t op) [Function]
Returns a positive value if op contains only 0.

int mpfi_has_zero (mpfi_t op) [Function]
Returns a positive value if op contains 0 (and possibly other numbers).

int mpfi_nan_p (mpfi-t op) [Function]
Returns non-zero if op is invalid, i.e. at least one of its endpoints is a Not-a-Number (NaN),
zero otherwise.

int mpfi_inf_p (mpfi_t op) [Function]
Returns non-zero if at least one of the endpoints of op is plus or minus infinity, zero otherwise.

int mpfi_bounded_p (mpfi_t op) [Function]
Returns non-zero if op is a bounded interval, i.e. neither invalid nor (semi-)infinite.

5.9 Input and Output Functions

Functions that perform input from a stdio stream, and functions that output to a stdio stream.
Passing a NULL pointer for a stream argument to any of these functions will make them read
from stdin and write to stdout, respectively.

When using any of these functions, it is a good idea to include stdio.h before mpfr.h, since
that will allow mpfr.h to define prototypes for these functions.

The input and output functions are based on the representation by endpoints. The input function
has to be improved. For the time being, it is mandatory to insert spaces between the interval
brackets and the endpoints and also around the comma separating the endpoints.

Chapter 5: Interval Functions 17

size_t mpfi_out_str (FILE *stream, int base, size_t n_digits, mpfi_.t [Function]
op)
Outputs op on stdio stream stream, as a string of digits in base base. The output is an
opening square bracket "[", followed by the lower endpoint, a separating comma, the upper
endpoint and a closing square bracket "|".

For each endpoint, the output is performed by mpfr_out_str. The following piece of in-
formation is taken from MPFR documentation. The base may vary from 2 to 36. For each
endpoint, it prints at most n_digits significant digits, or if n_digits is 0, the maximum number
of digits accurately representable by op. In addition to the significant digits, a decimal point
at the right of the first digit and a trailing exponent, in the form ‘eNNN’, are printed. If base
is greater than 10, ‘@ will be used instead of ‘e’ as exponent delimiter.

Returns the number of bytes written, or if an error occurred, return 0.

As mpfi_out_str outputs an enclosure of the input interval, and as mpfi_inp_str provides
an enclosure of the interval it reads, these functions are not reciprocal. More precisely, when
they are called one after the other, the resulting interval contains the initial one, and this
inclusion may be strict.

size_t mpfi_inp_str (mpfi_-t rop, FILE *stream, int base) [Function]
Inputs a string in base base from stdio stream stream, and puts the read float in rop. The
string is of the form ‘number’ or ‘[number1 , number 2]’. Each endpoint has the form ‘M@N’
or, if the base is 10 or less, alternatively ‘MeN’ or ‘MEN’. ‘M’ is the mantissa and ‘N’ is the
exponent. The mantissa is always in the specified base. The exponent is in decimal.

The argument base may be in the ranges 2 to 36.

Unlike the corresponding mpz function, the base will not be determined from the leading
characters of the string if base is 0. This is so that numbers like ‘0.23’ are not interpreted
as octal.

Returns the number of bytes read, or if an error occurred, return O.

void mpfi_print_binary (mpfi_t op) [Function]
Outputs op on stdout in raw binary format for each endpoint (the exponent is in decimal,
yet). The last bits from the least significant limb which do not belong to the mantissa are
printed between square brackets; they should always be zero.

5.10 Functions Operating on Endpoints

int mpfi_get_left (mpfr_t rop, mpfi_t op) [Function]
Sets rop to the left endpoint of op, rounded toward minus infinity. It returns a negative value
if rop differs from the left endpoint of op (due to rounding) and 0 otherwise.

int mpfi_get_right (mpfr-t rop, mpfi_t op) [Function]
Sets rop to the right endpoint of op, rounded toward plus infinity. It returns a positive value
if rop differs from the right endpoint of op (due to rounding) and 0 otherwise.

The following function should never be used... but it helps to return correct intervals when there
is a bug.

18 MPFT 1.5.3.

int mpfi_revert_if_needed (mpfi_t rop) [Function]
Swaps the endpoints of rop if they are not properly ordered, i.e. if the lower endpoint is
greater than the right one. It returns a non-zero value if the endpoints have been swapped,
zero otherwise.

int mpfi_put (mpfi_-t rop, mpfi_t op) Function
int mpfi_put_d (mpfi_t rop, double op) Function
int mpfi_put_ui (mpfi-t rop, unsigned long int op) Function

int mpfi_put_z (mpfi_-t rop, mpz_t op) Function

int mpfi_put_q (mpfi_t rop, mpq-t op) Function

int mpfi_put_fr (mpfi_t rop, mpfr_t op) [Function]
Extends the interval rop so that it contains op. In other words, rop is set to the convex hull
of rop and op. It returns a value indicating whether none, one or both endpoints are inexact
(due to possible roundings).

[]
Funcion)
int mpfi_put_si (mpfi_t rop, long int op) [Function]
[}
[]

int mpfi_interv_d (mpfi_-t rop, double op1, double op2) [Function]

int mpfi_interv_ui (mpfi_-t rop, unsigned long int opl, unsigned long [Function]
int op2)

int mpfi_interv_si (mpfi_t rop, long int opl, long int op2) [Function]

int mpfi_interv_z (mpfi_t rop, mpz_t opl, mpz_t op2) [Function]

int mpfi_interv_q (mpfi_t rop, mpq-t opl, mpq-t op2) [Function]

int mpfi_interv_fr (mpfi_t rop, mpfr_t opl, mpfr_t op2) [Function]

Sets rop to the interval having as endpoints opl and op2. The values of opl and op2 are
given in any order, the left endpoints of rop is always the minimum of opl and rop2. It
returns a value indicating whether none, one or both endpoints are inexact (due to possible
roundings).

5.11 Set Functions on Intervals

int mpfi_is_strictly_inside (mpfi_-t opl, mpfi_t op2) [Function]
Returns a positive value if the second interval op2 is contained in the interior of opl, 0
otherwise.

int mpfi_is_inside (mpfi_t opl, mpfi_t op2) Function
int mpfi_is_inside_d (double op1, mpfi_t op2) Function
int mpfi_is_inside_ui (unsigned long opl, mpfi_t op2) Function

[]
Funcion]
int mpfi_is_inside_si (long int opl, mpfi_t op2) [Function]
[]
[]
[]

int mpfi_is_inside_z (mpz_t opl, mpfi_t op2) Function
int mpfi_is_inside_q (mpq-t opl, mpfi_t op2) Function
int mpfi_is_inside_fr (mpfr_t opl, mpfi_t op2) Function

Returns a positive value if opl is contained in op2, 0 otherwise. Return 0 if at least one
argument is NaN or an invalid interval.

int mpfi_is_empty (mpfi_t op) [Function]
Returns a positive value if op is empty (its endpoints are in reverse order) and 0 otherwise.
Nothing is done in arithmetic or special functions to handle empty intervals: this is the
responsibility of the user to avoid computing with empty intervals.

int mpfi_intersect (mpfi_t rop, mpfi_t opl, mpfi_t op2) [Function]
Sets rop to the intersection (possibly empty) of the intervals opl and op2. It returns a value
indicating whether none, one or both endpoints are inexact (due to possible roundings).
Warning: this function can return an empty interval (i.e. with endpoints in reverse order).

Chapter 5: Interval Functions 19

int mpfi_union (mpfi_t rop, mpfi_t opl, mpfi_t op2) [Function]
Sets rop to the convex hull of the union of the intervals opl and op2. It returns a value
indicating whether none, one or both endpoints are inexact (due to possible roundings).

5.12 Miscellaneous Interval Functions

int mpfi_increase (mpfi_-t rop, mpfr_t op) [Function]
Subtracts op to the lower endpoint of rop and adds it to the upper endpoint of rop, sets the
resulting interval to rop. It returns a value indicating whether none, one or both endpoints
are inexact.

int mpfi_blow (mpfi_-t rop, mpfi_t opl1, double op2) [Function]
Sets rop to the interval whose center is the center of opl and whose radius is the radius of op1
multiplied by (1 + |op2]). It returns a value indicating whether none, one or both endpoints
are inexact.

int mpfi_bisect (mpfi-t ropl, mpfi_t rop2, mpfi_t op) [Function]
Splits op into two halves and sets them to ropl and rop2. Due to outward rounding, the two
halves ropl and rop2 may overlap. It returns a value >0 if the splitting point is greater than
the exact centre, <0 if it is smaller and 0 if it is the exact centre.

const char * mpfi_get_version () [Function]
Returns the MPFT version number as a NULL terminated string.

5.13 Error Handling

void MPFI_ERROR (char * msg) [Macro]
If there is no previous error, sets the error number to 1 and prints the message msg to the
standard error stream. If the error number is already set, do nothing.

int mpfi_is_error () [Function]
Returns 1 if the error number is set (to 1).

void mpfi_set_error (int op) [Function]
Sets the error number to op.

void mpfi_reset_error () [Function]
Resets the error number to 0.

20 MPFT 1.5.3.

Contributors

MPFT has been written by Fabrice Rouillier, Nathalie Revol, Sylvain Chevillard, Hong Diep
Nguyen, Christoph Lauter and Philippe Théveny. Its development has greatly benefited from
the patient and supportive help of the MPFR team.

21

References

This is a largely lacunary list of introductory references.

MPFR team (SPACES project, INRIA Lorraine and LORIA), "MPFR. The Multiple Pre-
cision Floating-Point Reliable Library", available at http://www.mpfr.org.

The main Web site for interval computations is http://cs.utep.edu/interval-comp/
main.html.

The Web site of the IEEE-1788 working group for the standardization of interval arithmetic
is http://grouper.ieee.org/groups/1788/.

G. Alefeld and J. Herzberger, "Introduction to interval analysis", Academic Press, 1983.
R. Baker Kearfott, "Rigorous global search: continuous problems", Kluwer, 1996.

T. Hickey and Q. Ju and M. H. Van Emden, "Interval arithmetic: From principles to
implementation", Journal of the ACM, vol. 48, no 4, pp 1038-1068, September 2001.

E. Hansen, "Global optimization using interval analysis", Marcel Dekker, 1992.

A. Neumaier, "Interval methods for systems of equations", Cambridge University Press,
1990.

H. Ratschek and J. Rokne, "New computer methods for global optimization", Ellis Horwood
Ltd, 1988.

N. Revol and F. Rouillier, "Motivations for an arbitrary precision interval arithmetic and
the MPFI library", Reliable Computing, vol. 11, no 4, pp 275-290, 2005.

http://cs.utep.edu/interval-comp/main.html
http://cs.utep.edu/interval-comp/main.html
http://grouper.ieee.org/groups/1788/

22

Concept Index

A

Arithmetic functions....................oooiii.. 12

C

Comparison functions, 15
Conditions for copying MPFI...................... 1
Conversion functions, 12
Copying conditions L. 1

E

Error handling L 19

F

Floating-point number......... 6
Functions operating on endpoints................. 17

I

I/O functions.o, 16
Initialization and assignment functions............ 10
Input functions............ ... ool 16
Installation......... ... i i 3
Interval ... 6
Interval arithmetic functions...................... 12
Interval assignment functions..................... 10
Interval comparisons functions.................... 15
Interval functions.........o 8

MPFT 1.5.3.

Interval functions with floating-point results 11
Interval initialization functions..................... 9
Interval input and output functions............... 16

M

P

Precision............ 6, 8

R

Reporting bugs....... ..o 5
Return values ... 8

S

Set functions on intervals......................... 18
Special functions oo 14

U

User-defined precisioncoovviiiieaannn. 8

Function and Type Index

MP_PreC_t. ... i 6
mpfi_abs....... ... 13
MPEl_@COS. ..t 14
mpfi_acosh 15
mpfi_add......... 12
mpfi_add_d ...t 12
mpfi_add_fr..... 12
mpfi_add_q ...t 12
mpfi_add_si............. oo 12
mpfi_add_ul 12
mpfi_add_z ... 12
mpfi_alea........... i 11
mpfi_asin......... o i 14
mpfi_asinh 15
mpfi_atam.........ouuiii e 14
mpfi_atan2 i 14
mpfi_atanh i i 15
mpfi_bisect 19
mpfi_blow. ... 19
mpfi_bounded p.................a 16
mpfi_cbrt. 13
mpfi_clear...... 9
mpfi_Cmp........... . 15
mpfi_cmp_d......... ... 15
mpfi_cmp_fr 16
MPEL_CMP_q v 16
mpfi_cmp_si.......... i 15
mpfi_cmp_ui...... 15
MPEfi_CMP_Z ..o 15
mpfi_const_catalan................ 15
mpfi_const_euler........... ..o, 15
mpfi_const_log2.........l 15
mpfi_const_pi.......oooiiiiiiiiiiiiiiiii 15
MPEi_COS..vviiiii i 14
mpfi_cosh........ouuu 14
mpfi_cot...... ... il 14
mpfi_coth..... ... 15
MPEfi_CSC.uvvttt i 14
mpfi_csch..... ..o 15
mpfi_d_div.........ol 13
mpfi_d_sub......... ... 12
mpfi_diam..........uuiii e 11
mpfi_diam_abs.........c.oiiiiiiiiiiiii 11
mpfi_diam_rel.............. 11
mpfi_div.......ol 13
MPEi_diV_2€XP ... vveee et 14
mpfi_div_2si....... ... il 14
mpfi_div_2ui.......... .. o ool 14
mpfi_div_d....... ... o i 13
mpfi div_fr..... i 13
mpfi_div_q ... 13
mpfi_div_si.........l 13
mpfi_div_ui.........o. 13
mpfi div_z 13
Mpfi_eXP.. ..ot 14
mpfi_exp2...... 14
mpfi_expml 15
mpfi_fr div......... ... oo il 13
mpfi_fr_sub............. . 12
mpfi_get_d......... 12

mpfi_get_fr....... 12

23

mpfi_get_left....... ... i 17
mpfi_get_prec......... ... 9
mpfi_get_right.............l 17
mpfi_get_version.............. ..ottt 19
mpfi_has_zZero..........ooiiiiiiiiiiiiiiiii 16
mpfi_hypot ... 15
mpfi_increase............c.oiiiiiiiiiiiiiii 19
mpfi_dinf p ... 16
mpfi_dinit...... ... 9
mpfi_init_set....... il 10
mpfi_init_set_d............l 10
mpfi_init_set_fr......... 10
mpfi_init_set_q........... ool 10
mpfi_init_set_si.......... il 10
mpfi_init_set_str..........., 11
mpfi_init_set_ui..........l 10
mpfi_init_set_z........... ool 10
mpfi_init2...... ... 9
mpfi_dinp_str....... ... i 17
mpfi_intersect...........l 18
mpfi_interv_d.......... ... il 18
mpfi_dinterv_fr.......... il 18
mpfi_interv_q.........cciiiiiiiiii 18
mpfi_interv_si.......... il 18
mpfi_interv_ui............. 18
mpfi_dnterv_z....... oo 18
mpfi_dinv...... 13
mpfi_is_empty.........oiiiiiiiiii 18
mpfi_is_error........ ... 19
mpfi_is_inside.......... il 18
mpfi_is_inside_d........... ..., 18
mpfi_is_inside_fr oo 18
mpfi_is_inside_q.......... ..o, 18
mpfi_is_inside_si..........o 18
mpfi_is_inside_ui.......... i 18
mpfi_is_inside_z..........l 18
mpfi_is meg 16
mpfi_is_nmonmeg...................iiia, 16
mpfi_is_monpos.................iiiiiiiiiiiiia, 16
mpfi_is_pos......... ... i 16
mpfi_is_strictly_inside 18
mpfi_is_strictly neg............coiiuiiiiiinin. 16
mpfi_is_strictly_pos...........ccoviiiiiiiinan. 16
mpfi_is_zero.......... il 16
mpfi_log... ... 14
mpfi_loglO ... 15
mpfi_loglp .. 15
mMPfi_1og2. . .. 15
mpfi mag......... ... 11
mpfi mid......... il 11
mpfi mig.. ... i 11
mpfi_mul...... 12
MPfi MUl _2€XPttt 13
mpfi mul_2si.......... i 13
mpfi_mul 2ui.............. ...l 13
mpfi mul_d......... 12
mpfi mul fr...... 12
MPEL_MUL Q. eereee e 12
mpfi mul_si........ ... 12
mpfi mul_ui........ 12
mpfi mul z 12

24

MPEfi NaN_P .o 16
mpfi meg....... ... 13
mpfi_out_str......... i 17
mpfi_print_binaryol 17
mpfi_put........ ... 18
mpfi_put_d......... 18
mpfi_put_fr.............. 18
mpfi _put_q ...t 18
mpfi_put_si............. 18
mpfi put_ui........ ... o o il 18
mpfi _put_z ... 18
mpfi_q div...... ..o il 13
mpfi_q Sub ... 12
mpfi_reset_error.......... ..o, 19
mpfi_revert_if needed.......................... 18
mpfi_round_prec..........., 9
mpfi_secC........ .. il 14
mpfi_sech..........l 15
mpfi_set..... 10
mpfi_set_d 10
mpfi_set_error............, 19
mpfi_set_fr...... il 10
mpfi_set_prec......... ... 9
mpfi_set_q......... il 10
mpfi_set_si........ ... il 10
mpfi_set_str......... il 10
mpfi_set_ui........ 10
mpfi_set_Z ... 10
mpfi_si_div......... ... oo il 13
mpfi_si_sub........ ... 12
mpfi_sin............ i 14

MPFT 1.5.3.

MPfi_SQT.. ..o 13
mpfi_sSqrt.. ... 13
mpfi_Sub.......ooiiii 12
MPEi_sSUb_dovtt e 12
mpfi_sub_fr........ oo 12
MPEi_SUb_q ...t 12
mpfi_sub_si............. . 12
mpfi_sub_ul............... 12
MPEfi_SUD_Z ...t 12
MPE L _SWaAP . 10
mpfi_t.... .. 6,7
mpfi_tan....... ... oo 14
mpfi_tanh..... 14
mpfi_ui div............ 13
mpfi_ui_sub........... ... 12
MPEi_UNION . .vvttt 19
mpfi_urandom.............i i, 12
mpfi_z div...... ... 13
mpfi_z sub....... i 12
MPFI_BOTH_ARE_EXACT i, 8
MPFI_BOTH_ARE_INEXACT........... oiii... 8
MPFI_ERROR i 19
MPFI_FLAGS_BOTH_ENDPOINTS_EXACT 8
MPFI_FLAGS_BOTH_ENDPOINTS_INEXACT............. 8
MPFI_FLAGS_LEFT_ENDPOINT_INEXACT 8
MPFI_FLAGS_RIGHT_ENDPOINT_INEXACT............. 8
MPFI_LEFT_IS_INEXACT, 8
MPFI_RIGHT_IS_INEXACT.........., 8
mpfr_get_default_prec........................... 8
mpfr_set_default_prec...................., 8
mpfr_t ... 6

Table of Contents

MPFI Copying Conditionsiiiiii ... 1
1 Introduction to MPFI 2
2 Installing MPFI 3
2.1 Known Build Problems 4
2.2 Getting the Latest Version of MPFL...... 4

3 Reporting Bugs............ ... 5
4 MPFI Basics. ... 6
4.1 Nomenclature and Types. e 6
4.2 Function Classest e 6
4.3 MPFI Variable COnventionsu.uuutette ettt e, 7

5 Interval Functions................ 8
5.1 Return Values 8
5.2 Precision Handling. ... o 8
5.3 Initialization and Assignment Functions.......... i, 9
5.3.1 Initialization Functions........... i 9

5.3.2 Assignment FUnctions.ot 10

5.3.3 Combined Initialization and Assignment Functions 10

5.4 Interval Functions with Floating-point Results 11
5.5 Conversion FUnctions e e 12
5.6 Basic Arithmetic Functions 12
5.7 Special FUNCEIONSt 14
5.8 Comparison Functions 15
5.9 Input and Output Functions 16
5.10 Functions Operating on Endpoints........ ... o i, 17
5.11 Set Functions on Intervals i i 18
5.12 Miscellaneous Interval Functions.......... ... i, 19
5.13 Error Handling 19
Contributors 20
References......... 21
Concept Index i 22

Function and Type Index 23

	MPFI Copying Conditions
	Introduction to MPFI
	Installing MPFI
	Known Build Problems
	Getting the Latest Version of MPFI

	Reporting Bugs
	MPFI Basics
	Nomenclature and Types
	Function Classes
	MPFI Variable Conventions

	Interval Functions
	Return Values
	Precision Handling
	Initialization and Assignment Functions
	Initialization Functions
	Assignment Functions
	Combined Initialization and Assignment Functions

	Interval Functions with Floating-point Results
	Conversion Functions
	Basic Arithmetic Functions
	Special Functions
	Comparison Functions
	Input and Output Functions
	Functions Operating on Endpoints
	Set Functions on Intervals
	Miscellaneous Interval Functions
	Error Handling

	Contributors
	References
	Concept Index
	Function and Type Index

