Source code for azure.mgmt.datalake.analytics.job.models.job_statistics_vertex_stage_py3

# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is
# regenerated.
# --------------------------------------------------------------------------

from msrest.serialization import Model


[docs]class JobStatisticsVertexStage(Model): """The Data Lake Analytics job statistics vertex stage information. Variables are only populated by the server, and will be ignored when sending a request. :ivar data_read: The amount of data read, in bytes. :vartype data_read: long :ivar data_read_cross_pod: The amount of data read across multiple pods, in bytes. :vartype data_read_cross_pod: long :ivar data_read_intra_pod: The amount of data read in one pod, in bytes. :vartype data_read_intra_pod: long :ivar data_to_read: The amount of data remaining to be read, in bytes. :vartype data_to_read: long :ivar data_written: The amount of data written, in bytes. :vartype data_written: long :ivar duplicate_discard_count: The number of duplicates that were discarded. :vartype duplicate_discard_count: int :ivar failed_count: The number of failures that occured in this stage. :vartype failed_count: int :ivar max_vertex_data_read: The maximum amount of data read in a single vertex, in bytes. :vartype max_vertex_data_read: long :ivar min_vertex_data_read: The minimum amount of data read in a single vertex, in bytes. :vartype min_vertex_data_read: long :ivar read_failure_count: The number of read failures in this stage. :vartype read_failure_count: int :ivar revocation_count: The number of vertices that were revoked during this stage. :vartype revocation_count: int :ivar running_count: The number of currently running vertices in this stage. :vartype running_count: int :ivar scheduled_count: The number of currently scheduled vertices in this stage. :vartype scheduled_count: int :ivar stage_name: The name of this stage in job execution. :vartype stage_name: str :ivar succeeded_count: The number of vertices that succeeded in this stage. :vartype succeeded_count: int :ivar temp_data_written: The amount of temporary data written, in bytes. :vartype temp_data_written: long :ivar total_count: The total vertex count for this stage. :vartype total_count: int :ivar total_failed_time: The amount of time that failed vertices took up in this stage. :vartype total_failed_time: timedelta :ivar total_progress: The current progress of this stage, as a percentage. :vartype total_progress: int :ivar total_succeeded_time: The amount of time all successful vertices took in this stage. :vartype total_succeeded_time: timedelta :ivar total_peak_mem_usage: The sum of the peak memory usage of all the vertices in the stage, in bytes. :vartype total_peak_mem_usage: long :ivar total_execution_time: The sum of the total execution time of all the vertices in the stage. :vartype total_execution_time: timedelta :param max_data_read_vertex: the vertex with the maximum amount of data read. :type max_data_read_vertex: ~azure.mgmt.datalake.analytics.job.models.JobStatisticsVertex :param max_execution_time_vertex: the vertex with the maximum execution time. :type max_execution_time_vertex: ~azure.mgmt.datalake.analytics.job.models.JobStatisticsVertex :param max_peak_mem_usage_vertex: the vertex with the maximum peak memory usage. :type max_peak_mem_usage_vertex: ~azure.mgmt.datalake.analytics.job.models.JobStatisticsVertex :ivar estimated_vertex_cpu_core_count: The estimated vertex CPU core count. :vartype estimated_vertex_cpu_core_count: int :ivar estimated_vertex_peak_cpu_core_count: The estimated vertex peak CPU core count. :vartype estimated_vertex_peak_cpu_core_count: int :ivar estimated_vertex_mem_size: The estimated vertex memory size, in bytes. :vartype estimated_vertex_mem_size: long :param allocated_container_cpu_core_count: The statistics information for the allocated container CPU core count. :type allocated_container_cpu_core_count: ~azure.mgmt.datalake.analytics.job.models.ResourceUsageStatistics :param allocated_container_mem_size: The statistics information for the allocated container memory size. :type allocated_container_mem_size: ~azure.mgmt.datalake.analytics.job.models.ResourceUsageStatistics :param used_vertex_cpu_core_count: The statistics information for the used vertex CPU core count. :type used_vertex_cpu_core_count: ~azure.mgmt.datalake.analytics.job.models.ResourceUsageStatistics :param used_vertex_peak_mem_size: The statistics information for the used vertex peak memory size. :type used_vertex_peak_mem_size: ~azure.mgmt.datalake.analytics.job.models.ResourceUsageStatistics """ _validation = { 'data_read': {'readonly': True}, 'data_read_cross_pod': {'readonly': True}, 'data_read_intra_pod': {'readonly': True}, 'data_to_read': {'readonly': True}, 'data_written': {'readonly': True}, 'duplicate_discard_count': {'readonly': True}, 'failed_count': {'readonly': True}, 'max_vertex_data_read': {'readonly': True}, 'min_vertex_data_read': {'readonly': True}, 'read_failure_count': {'readonly': True}, 'revocation_count': {'readonly': True}, 'running_count': {'readonly': True}, 'scheduled_count': {'readonly': True}, 'stage_name': {'readonly': True}, 'succeeded_count': {'readonly': True}, 'temp_data_written': {'readonly': True}, 'total_count': {'readonly': True}, 'total_failed_time': {'readonly': True}, 'total_progress': {'readonly': True}, 'total_succeeded_time': {'readonly': True}, 'total_peak_mem_usage': {'readonly': True}, 'total_execution_time': {'readonly': True}, 'estimated_vertex_cpu_core_count': {'readonly': True}, 'estimated_vertex_peak_cpu_core_count': {'readonly': True}, 'estimated_vertex_mem_size': {'readonly': True}, } _attribute_map = { 'data_read': {'key': 'dataRead', 'type': 'long'}, 'data_read_cross_pod': {'key': 'dataReadCrossPod', 'type': 'long'}, 'data_read_intra_pod': {'key': 'dataReadIntraPod', 'type': 'long'}, 'data_to_read': {'key': 'dataToRead', 'type': 'long'}, 'data_written': {'key': 'dataWritten', 'type': 'long'}, 'duplicate_discard_count': {'key': 'duplicateDiscardCount', 'type': 'int'}, 'failed_count': {'key': 'failedCount', 'type': 'int'}, 'max_vertex_data_read': {'key': 'maxVertexDataRead', 'type': 'long'}, 'min_vertex_data_read': {'key': 'minVertexDataRead', 'type': 'long'}, 'read_failure_count': {'key': 'readFailureCount', 'type': 'int'}, 'revocation_count': {'key': 'revocationCount', 'type': 'int'}, 'running_count': {'key': 'runningCount', 'type': 'int'}, 'scheduled_count': {'key': 'scheduledCount', 'type': 'int'}, 'stage_name': {'key': 'stageName', 'type': 'str'}, 'succeeded_count': {'key': 'succeededCount', 'type': 'int'}, 'temp_data_written': {'key': 'tempDataWritten', 'type': 'long'}, 'total_count': {'key': 'totalCount', 'type': 'int'}, 'total_failed_time': {'key': 'totalFailedTime', 'type': 'duration'}, 'total_progress': {'key': 'totalProgress', 'type': 'int'}, 'total_succeeded_time': {'key': 'totalSucceededTime', 'type': 'duration'}, 'total_peak_mem_usage': {'key': 'totalPeakMemUsage', 'type': 'long'}, 'total_execution_time': {'key': 'totalExecutionTime', 'type': 'duration'}, 'max_data_read_vertex': {'key': 'maxDataReadVertex', 'type': 'JobStatisticsVertex'}, 'max_execution_time_vertex': {'key': 'maxExecutionTimeVertex', 'type': 'JobStatisticsVertex'}, 'max_peak_mem_usage_vertex': {'key': 'maxPeakMemUsageVertex', 'type': 'JobStatisticsVertex'}, 'estimated_vertex_cpu_core_count': {'key': 'estimatedVertexCpuCoreCount', 'type': 'int'}, 'estimated_vertex_peak_cpu_core_count': {'key': 'estimatedVertexPeakCpuCoreCount', 'type': 'int'}, 'estimated_vertex_mem_size': {'key': 'estimatedVertexMemSize', 'type': 'long'}, 'allocated_container_cpu_core_count': {'key': 'allocatedContainerCpuCoreCount', 'type': 'ResourceUsageStatistics'}, 'allocated_container_mem_size': {'key': 'allocatedContainerMemSize', 'type': 'ResourceUsageStatistics'}, 'used_vertex_cpu_core_count': {'key': 'usedVertexCpuCoreCount', 'type': 'ResourceUsageStatistics'}, 'used_vertex_peak_mem_size': {'key': 'usedVertexPeakMemSize', 'type': 'ResourceUsageStatistics'}, } def __init__(self, *, max_data_read_vertex=None, max_execution_time_vertex=None, max_peak_mem_usage_vertex=None, allocated_container_cpu_core_count=None, allocated_container_mem_size=None, used_vertex_cpu_core_count=None, used_vertex_peak_mem_size=None, **kwargs) -> None: super(JobStatisticsVertexStage, self).__init__(**kwargs) self.data_read = None self.data_read_cross_pod = None self.data_read_intra_pod = None self.data_to_read = None self.data_written = None self.duplicate_discard_count = None self.failed_count = None self.max_vertex_data_read = None self.min_vertex_data_read = None self.read_failure_count = None self.revocation_count = None self.running_count = None self.scheduled_count = None self.stage_name = None self.succeeded_count = None self.temp_data_written = None self.total_count = None self.total_failed_time = None self.total_progress = None self.total_succeeded_time = None self.total_peak_mem_usage = None self.total_execution_time = None self.max_data_read_vertex = max_data_read_vertex self.max_execution_time_vertex = max_execution_time_vertex self.max_peak_mem_usage_vertex = max_peak_mem_usage_vertex self.estimated_vertex_cpu_core_count = None self.estimated_vertex_peak_cpu_core_count = None self.estimated_vertex_mem_size = None self.allocated_container_cpu_core_count = allocated_container_cpu_core_count self.allocated_container_mem_size = allocated_container_mem_size self.used_vertex_cpu_core_count = used_vertex_cpu_core_count self.used_vertex_peak_mem_size = used_vertex_peak_mem_size