sklearn.metrics.RocCurveDisplay

class sklearn.metrics.RocCurveDisplay(fpr, tpr, roc_auc, estimator_name)[source]

ROC Curve visualization.

It is recommend to use plot_roc_curve to create a visualizer. All parameters are stored as attributes.

Read more in the User Guide.

Parameters

fpr : ndarray

False positive rate.

tpr : ndarray

True positive rate.

roc_auc : float

Area under ROC curve.

estimator_name : str

Name of estimator.

Attributes

line_

(matplotlib Artist) ROC Curve.

ax_

(matplotlib Axes) Axes with ROC Curve.

figure_

(matplotlib Figure) Figure containing the curve.

Examples

>>> import matplotlib.pyplot as plt  
>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([0, 0, 1, 1])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred)
>>> roc_auc = metrics.auc(fpr, tpr)
>>> display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc,                                          estimator_name='example estimator')
>>> display.plot()  
>>> plt.show()      

Methods

plot([ax, name])

Plot visualization

__init__(fpr, tpr, roc_auc, estimator_name)[source]

Initialize self. See help(type(self)) for accurate signature.

plot(ax=None, name=None, **kwargs)[source]

Plot visualization

Extra keyword arguments will be passed to matplotlib’s plot.

Parameters

ax : matplotlib axes, default=None

Axes object to plot on. If None, a new figure and axes is created.

name : str, default=None

Name of ROC Curve for labeling. If None, use the name of the estimator.

Returns

display : RocCurveDisplay

Object that stores computed values.