sklearn.multioutput.MultiOutputClassifier

class sklearn.multioutput.MultiOutputClassifier(estimator, n_jobs=None)[source]

Multi target classification

This strategy consists of fitting one classifier per target. This is a simple strategy for extending classifiers that do not natively support multi-target classification

Parameters

estimator : estimator object

An estimator object implementing fit, score and predict_proba.

n_jobs : int or None, optional (default=None)

The number of jobs to use for the computation. It does each target variable in y in parallel. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.

Attributes

estimators_

(list of n_output estimators) Estimators used for predictions.

Examples

>>> import numpy as np
>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> X, y = make_multilabel_classification(n_classes=3, random_state=0)
>>> clf = MultiOutputClassifier(KNeighborsClassifier()).fit(X, y)
>>> clf.predict(X[-2:])
array([[1, 1, 0], [1, 1, 1]])

Methods

fit(X, Y[, sample_weight])

Fit the model to data matrix X and targets Y.

get_params([deep])

Get parameters for this estimator.

partial_fit(X, y[, classes, sample_weight])

Incrementally fit the model to data.

predict(X)

Predict multi-output variable using a model

score(X, y)

Returns the mean accuracy on the given test data and labels.

set_params(**params)

Set the parameters of this estimator.

__init__(estimator, n_jobs=None)[source]

Initialize self. See help(type(self)) for accurate signature.

fit(X, Y, sample_weight=None)[source]

Fit the model to data matrix X and targets Y.

Parameters

X : {array-like, sparse matrix} of shape (n_samples, n_features)

The input data.

Y : array-like of shape (n_samples, n_classes)

The target values.

sample_weight : array-like of shape (n_samples,) or None

Sample weights. If None, then samples are equally weighted. Only supported if the underlying classifier supports sample weights.

Returns

self : object

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters

deep : bool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns

params : mapping of string to any

Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)[source]

Incrementally fit the model to data. Fit a separate model for each output variable.

Parameters

X : (sparse) array-like, shape (n_samples, n_features)

Data.

y : (sparse) array-like, shape (n_samples, n_outputs)

Multi-output targets.

classes : list of numpy arrays, shape (n_outputs)

Each array is unique classes for one output in str/int Can be obtained by via [np.unique(y[:, i]) for i in range(y.shape[1])], where y is the target matrix of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to contain all labels in classes.

sample_weight : array-like of shape (n_samples,), default=None

Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.

Returns

self : object

predict(X)[source]
Predict multi-output variable using a model

trained for each target variable.

Parameters

X : (sparse) array-like, shape (n_samples, n_features)

Data.

Returns

y : (sparse) array-like, shape (n_samples, n_outputs)

Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor.

property predict_proba

Probability estimates. Returns prediction probabilities for each class of each output.

This method will raise a ValueError if any of the estimators do not have predict_proba.

Parameters

X : array-like, shape (n_samples, n_features)

Data

Returns

p : array of shape (n_samples, n_classes), or a list of n_outputs such arrays if n_outputs > 1.

The class probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_.

score(X, y)[source]

Returns the mean accuracy on the given test data and labels.

Parameters

X : array-like, shape [n_samples, n_features]

Test samples

y : array-like, shape [n_samples, n_outputs]

True values for X

Returns

scores : float

accuracy_score of self.predict(X) versus y

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters

**params : dict

Estimator parameters.

Returns

self : object

Estimator instance.